首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m~3/min,respectively, showing that the position of high-level boreholes was reasonable.  相似文献   

2.
Henan Pingdingshan No.10 mine is prone to both coal and gas outbursts. The E9–10 coal seam is the main coal-producing seam but has poor quality ventilation, thus making it relatively difficult for gas extraction. The F15 coal seam, at its lower section, is not prone to coal and gas outbursts. The average seam separation distance of 150 m is greater than the upper limit for underside protective seam mining. Based on borehole imaging technology for field exploration of coal and rock fracture characteristics and discrete element numerical simulation, we have studied the evolution laws and distribution characteristics of the coal and rock fissure field between these two coal seams. By analysis of the influential effect of group F coal mining on the E9–10 coal seam, we have shown that a number of small fissures also develop in the area some 150 m above the overlying strata. The width and number of the fissures also increase with the extent of mining activity. Most of the fissures develop at a low angle or even parallel to the strata. The results show that the mining of the F15 coal seam has the effect of improving the permeability of the E9–10 coal seam.  相似文献   

3.
Based on the geological conditions of coal mining face No. 15-14120 at No. 8 mine of Pingdingshan coal mining group, the real-time evolution of coal-roof crack network with working face advancing was collected with the help of intrinsically safe borehole video instrument. And according to the geology of this working face, a discrete element model was calculated by UDEC. Combining in situ experimental data with numerical results, the relationship between the fractal dimension of boreholes’ wall and the distribution of advanced abutment pressure was studied under the condition of mining advance. The results show that the variation tendency of fractal dimension and the abutment pressure has the same characteristic value. The distance between working face and the peak value of the abutment pressure has a slight increasing trend with the advancing of mining-face. When the working face is set as the original point, the trend of fractal dimension from the far place to the origin can be divided into three phases: constant, steady increasing and constant. And the turning points of these phases are the max-influencing distance (50 m) and peak value (15 m) of abutment pressure.  相似文献   

4.
The geological conditions of the Pingdingshan coal mining group were used to construct a physical model used to study the distribution and evolution of mining induced cracks in the overburden strata. Digital graphics technology and fractal theory are introduced to characterize the distribution and growth of the mining induced fractures in the overburden strata of an inclined coal seam. A relationship between fractal dimension of the fracture network and the pressure in the overburden strata is suggested. Mining induced fractures spread dynamically to the mining face and up into the roof as the length of advance increases. Moreover, the fractal dimension of the fracture network increases with increased mining length, in general, but decreases during a period from overburden strata separation until the main roof collapses. It is a1so shown that overburden strata pressure plays an important role in the evolution of mining induced fractures and that the fractal dimension of the fractures increases with the pressure of the overburden.  相似文献   

5.
In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side.  相似文献   

6.
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining,the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis.The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting conditions of the repeated mining face were obtained.The results indicate that when the repeated mining face passes the residual pillars,the sudden instability causes fracturing in the main roof above the old goaf and forms an extra-large rock block above the mining face.A relatively stable ‘‘Voussoir beam" structure is formed after the advance fracturing of the main roof.When the repeated mining face passes the old goaf,as the large rock block revolves and touches gangue,the rock block will break secondarily under overburden rock loads.An example calculation was performed involving an integrated mine in Shanxi province,results showed that minimum working resistance values of support determined to be reasonable were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf.On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.  相似文献   

7.
Steel mesh is used as a passive skin confinement medium to supplement the active support provided by rock bolts for roof and rib control in underground coal mines. Thin spray-on liners (TSL) are believed to have the potential to take the place of steel mesh as the skin confinement medium in underground mines. To confirm this belief, large scale laboratory experiments were conducted to compare the behaviour of welded steel mesh and a TSL, when used in conjunction with rock bolts, in reinforcing strata with weak bedding planes and strata prone to guttering, two common rock conditions which exist in coal mines. It was found that while the peak load taken by the simulated rock mass with weak bedding planes acting as the control sample (no skin confinement) was 2494 kN, the corresponding value of the sample with 5 mm thick TSL reinforcement reached 2856 kN. The peak load of the steel mesh reinforced sample was only 2321 kN, but this was attributed to the fact that one of the rock bolts broke during the test. The TSL reinforced sample had a similar post-yield behaviour as the steel mesh reinforced one. The results of the large scale guttering test indicated that a TSL is better than steel mesh in restricting rock movement and thus inhibiting the formation of gutters in the roof.  相似文献   

8.
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined. In this article, the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement. The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face, which form the wedge-shaped fissure zone. The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers, and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure. At last, the calculating formula was deducted based on theoretical analysis.  相似文献   

9.
The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard. A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard. This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam. A two-dimensional physical model is constructed on the basis of geological background of mining face No. 1122(1) in coal seam No. 11-2, Zhangji Coal Mine, Huainan Mining Group Corporation. The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model. An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis. Moreover, the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks. Isograms of gas pressure at various times in mining-induced crack networks are plotted, suggesting a shape and dimension of gas accumulation area.  相似文献   

10.
We describe the fractal analysis of three differently sized coal samples (0.350–0.833 mm, 0.245–0.350 mm, and 0.198–0.245 mm). The influence of fractal dimension on CH4 adsorption capacity is investigated. The physical parameters of the samples were determined via the Brunauer–Emmett–Teller (BET) theory. A CH4 adsorption study over the pressures range from 0 to 5 MPa was carried out with a new volumetric measurement system. The CH4 adsorption was measured using the differently sized coal. Two fractal dimensions, D1 and D2 were determined over the pressure ranges from 0 to 0.5 MPa and from 0.5 to 1 MPa, using the Frenkel-Halsey-Hill (FHH) method. We conclude that the two fractal dimensions correlate with the CH4 adsorption capacity of the coal: increasing CH4 adsorption capacity occurs with a corresponding increase in fractal dimension. Furthermore, D1 and D2 are positively correlated with surface area, pore volume, and samples size. The size distribution of the samples has fractal characteristics.  相似文献   

11.
This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth 80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully.  相似文献   

12.
This paper describes a field and numerical investigation of the overburden strata response to underground longwall mining, focusing on overburden strata movements and stress concentrations. Subsidence related high stress concentrations are believed to have caused damage to river beds in the Illawarra region, Australia. In the field study, extensometers, stressmeters and piezometers were installed in the overburden strata of a longwall panel at West Cliff Colliery. During longwall mining, a total of 1000 mm tensile deformation was recorded in the overburden strata and as a result bed separation and gaps were formed. Bed separation was observed to start in the roof of the mining seam and gradually propagate toward the surface as the longwall face advanced. A substantial increase in the near-surface horizontal stresses was recorded before the longwall face reached the monitored locations. The stresses continued to increase as mining advanced and they reached a peak at about 200 m behind the longwall face. A numerical modelling study identified that the angle of breakage (i.e., the angle of the boundary of caved zone) behind the longwall face and over the goaf was 22–25° from vertical direction. This is consistent with the monitoring results showing the high gradient of stresses and strains on the surface 150–320 m behind the mining face.  相似文献   

13.
Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.  相似文献   

14.
In this paper, the optimization design of the low strength mechanical test and orthogonal test have been analyzed in order to simulate the mechanical properties of thick and extra-thick coal seam accurately in a similar material simulation test. The results show that the specimen can reach a wider range of strength when cement has been used compared to that of gypsum, suggesting that cement is more suitable for making coal seam in similar material simulation tests. The uniaxial compressive strength is more sensitive to cement than coal or sand. The proportion of coal and sand do not play a decisive role in uniaxial compressive strength. The uniaxial compressive strength and specimen density decrease as the mass percent of coal and aggregate–binder ratio rise. There is a positive correlation between uniaxial compressive strength and density. The No. 5 proportion(cement: sand: water: activated carbon: coal = 6:6:7:1.1:79.9)was chosen to be used in the similar material simulation test of steeply dipping and extra-thick coal seam with a density of 0.913 g/cm~3 and an uniaxial compressive strength of 0.076 MPa which are in accordance with the similarity theory. The phenomenon of overburden stratum movement, fracture development and floor pressure relief were obtained during the similar material simulation test by using the proportion.  相似文献   

15.
With the depletion of easily minable coal seams, less favorable reserves under adverse conditions have to be mined out to meet the market demand. Due to some historical reasons, large amount of remnant coal was left unrecovered. One such case history occurred with the remnant rectangular stripe coal pillars using partial extraction method at Guandi Mine, Shanxi Province, China. The challenge that the coal mine was facing was that there is an ultra-close coal seam right under it with an only 0.8–1.5 m sandstone dirt band in between. The simulation study was carried out to investigate the simultaneous recovery of upper remnant coal pillars while mining the ultra-close lower panel using longwall top coal caving(LTCC). The remnant coal pillar was induced to cave in as top coal in LTCC system. Physical modelling shows that the coal pillars are the abutments of the stress arch structure formed within the overburden strata. The stability of overhanging roof strata highly depends on the stability of the remnant coal pillars. And the gob development(roof strata cave-in) is intermittent with the cave-in of these coal pillars and the sandstone dirt band. FLAC3 D numerical modelling shows that the multi-seam interaction has a significant influence on mining-induced stress environment for mining of lower panels. The pattern of the stress evolution on the coal pillars with the advance of the lower working face was found. It is demonstrated that the stress relief of a remnant coal pillar enhances the caveability of the pillars and sandstone dirt band below.  相似文献   

16.
The evolution of gas bearing channels in the roof, and their spatial distribution, was studied. A complete consideration of gas flow changes through the stress–strain changes in the roof near a working face is made. The theoretical abutment pressure distribution using displacement monitors and borehole visual recording instruments allow a theoretical analysis. Field test research determined the conditions for formation of macroscopic gas channels. These appear along the working face roof, normally distributed to it. These results show that the coal rock stratification becomes a macroscopic gas channel boundary if its deformation is less than the lower layer, or greater than the layer above it. At the same time the stability is greater than the distance from the roof for hanging dew conditions. The working face advances and the roof gas channels experience a cycle of development. Microscopic channels dominate the initial stage then macroscopic gas channels form, develop, and close. The evolution of the macroscopic channels depends on the ratio between the distances from the new compaction area in the goaf to the initial stress area in front of the working face. The amount of daily advance of the face also affects channel development. The experimental observations in one mining area showed that the main gas channels are located about 2 and 6.2 m above the lower surface of the roof and that they have an evolution period 7 to 11 days long.  相似文献   

17.
This paper describes a specific case of mining in a water-rich coal seam in western China. Water inrushes, roof caving and other disasters induced by intensive mining operation could pose great threats to the safety of coal mines. The strata behavior during the high-intensity extraction in the water-rich coal seam is analyzed by employing the numerical simulation method and in situ monitoring. The results show that about 10 m ahead of the workface, the front abutment pressure peaks is at 34.13 MPa, while the peak of the side abutment pressure is located about 8 m away from the gateway with the value of 12.41 MPa; the height of the fracture zone, the first weighting step and the cycle weighting step are calculated to be 45, 50 and 20.8 m, respectively; pressure distribution in the workface is characterized by that the vertical pressure in the center occurs earlier and is stronger than those on both ends. Then, the results above are verified by in situ measurement, which may provide a basis for safe mining under similar conditions.  相似文献   

18.
According to the special requirements of secondary mining of resources in gateway-and-pillar goaf in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are used to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on different mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goaf in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.  相似文献   

19.
In this study,differences of signal characteristics between mine shocks and coal and gas outbursts in coal mines were examined with the micro-seismic monitoring technique and time–frequency analysis.The duration of the mine shock is short while the coal and gas outburst lasts longer.The outburst consists of three stages:the pre-shock,secondary shock and main shock stage,respectively.The velocity amplitude of the mine shock is between 10~(-)5and 10~(-3)m/s,which is higher than that of the outburst with the same energy level.In addition,in both cases,the correlation between the velocity amplitude and energy is positive while the correlation between the signal frequency band distribution and energy is negative.The signal frequency band of the high energy mine shock is distributed between 0 and 50 Hz,and the low energy mine shock is between 50 and 100 Hz.The fractal characteristics of mine shocks were studied based on a fractal theory.The box dimensions of high energy mine shocks are lower than the low energy ones,however,the box dimensions of outbursts are higher than that of mine shocks with the same energy level.The higher box dimensions indicate more dangerous dynamic events.  相似文献   

20.
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing’an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing’an Coal Mine is of IABIIABCIIIABCD type, consisting of molecular water absorption (the IAB-type), the tectonic stress type + gravity deformation type + hydraulic type (the IIABC-type), and the IIIABCD-type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing’an Coal Mine with good effect. Xing’an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号