首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
A multichannel mass spectrometer based on the rectilinear ion trap (RIT) analyzer was designed and constructed for simultaneous high-throughput analysis of multiple samples. The instrument features four parallel ion source/mass analyzer/detector channels assembled in a single vacuum chamber and operated using a common set of control electronics, including a single rf amplifier and transformer coil. This multiplexed RIT mass spectrometer employs an array of four millimeter-sized ion traps (x(o) = 5.0 mm and y(o) = 4.0 mm, where x(o) and y(o) are the half-distances in the x and y dimensions, respectively). Mass spectra are acquired from four different samples simultaneously. The available mass/charge range is m/z 15-510 with excellent linearity of the mass calibration (R2 = 0.999 999). The peak width is less than 0.3 mass/charge units at m/z 146, corresponding to a resolution of approximately 500. Simultaneous MS/MS of ions due to four compounds (3-fluoroanisole, 4-fluoroanisole, 2-fluorobenzyl alcohol, 2,6-dimethylcyclohexanone) with the same nominal molecular radical cation but distinctive fragmentation patterns was demonstrated. Isolation and fragmentation efficiencies were approximately 25 and approximately 75%, respectively, measured in the typical case of the molecular radical cation of acetophenone. Preacquisition differential data were obtained by real-time subtraction of the ion signals from two channels of the multiplexed mass spectrometer. The differential experiment presented offers proof of principle of comparative mass spectra in high-throughput screening applications while reducing data storage requirements.  相似文献   

2.
We report the design and first applications of a tandem mass spectrometer (a quadrupole time-of-flight mass spectrometer) optimized for the transmission and analysis of large macromolecular assemblies. Careful control of the pressure gradient in the different pumping stages of the instrument has been found to be essential for the detection of macromolecular particles. Such assemblies are, however, difficult to analyze by tandem-MS approaches, because they give rise to signals above m/z 3,000-4,000, the limit for commercial quadrupoles. By reducing the frequency of the quadrupole to 300 kHz and using it as a narrow-band mass filter, we show that it is possible to isolate ions from a single peak at m/z 22,000 in a window as narrow as 22 m/z units. Using cesium iodide cluster signals, we show that the mass range in the time-of-flight (TOF) analyzer extends beyond m/z 90,000, in theory to more than m/z 150,000. We also demonstrate that the resolution of the instrument is greater than 3,000 at m/z 44,500. Tandem-MS capabilities are illustrated by separating components from heterooligomeric assemblies formed between tetrameric transthyretin, thyroxine, retinol-binding protein, and retinol. Isolation of a single charge state at m/z 5,340 in the quadrupole and subsequent collision-induced dissociation (CID) in the gas-filled collision cell leads to the formation of ions from individual subunits and subcomplexes, identified by their mass and charge in the TOF analyzer.  相似文献   

3.
Methods for bidirectional ion transmission between distinct quadrupole arrays were developed on a quadrupole/time-of-flight tandem mass spectrometer (QqTOF) containing three quadrupoles (ion guide Q0, mass filter Q1, and collision cell Q2) and a reflectron TOF analyzer, for the purpose of implementing multistage ion/ion reaction experiments. The transfer efficiency, defined as the percentage of ions detected after two transfer steps relative to the initial ion abundance, was found to be about 60% between Q2 and Q0 (with passage through the intermediate array (Q1)) and almost 100% between Q2 and Q1. Efficient ion transfer enabled new means for executing MSn experiments on an instrument of this type by operating Q1 in rf/dc mode for performing multiple steps of precursor/product ion isolation while passing ions through Q1 or trapping ions in Q1. In the latter case, the Q1 functioned as a linear ion trap. Either collision induced dissociation (CID) or ion/ion reactions can be conducted in between each stage of mass analysis. MS3 or MS4 experiments were developed to illustrate the charge increase of peptide ions via two steps of charge inversion ion/ion reactions, CID of electron-transfer dissociation (ETD) products and CID of a metal-peptide complex formed from ion/ion reactions.  相似文献   

4.
Handheld rectilinear ion trap mass spectrometer   总被引:1,自引:0,他引:1  
A shoebox-sized, 10-kg, handheld mass spectrometer, Mini 10, based on a rectilinear ion trap mass analyzer has been designed, built, and characterized. This instrument has evolved from a decade-long experimental and simulation program in mass spectrometer miniaturization. The rectilinear ion trap has a simplified geometry and high trapping capacity, and when used with a miniature and ruggedized pumping system, it allows chemical analysis while the instrument is being carried. Compact electronics, including an air core RF drive coil, were developed to control the instrument and to record mass spectra. The instrument runs on battery power, consuming less than 70 W, similar to a laptop computer. Wired and wireless networking capabilities are implemented. The instrument gives unit resolution and a mass range of over m/z 500. Tandem mass spectrometry capabilities are implemented using collision-induced dissociation, and they are used to provide confirmation of chemical structure during in situ analysis. Continuous monitoring of air and solution samples is demonstrated, and a limit of detection of 50 ppb was obtained for toluene vapor in air and for an aqueous naphthalene solution using membrane sample introduction.  相似文献   

5.
Ouyang Z  Wu G  Song Y  Li H  Plass WR  Cooks RG 《Analytical chemistry》2004,76(16):4595-4605
A mass analyzer based on a rectilinear geometry ion trap (RIT) has been built, and its performance has been characterized. Design concepts for this type of ion trap are delineated with emphasis on the effects of electrode geometry on the calculated electric field. The Mathieu stability region was mapped experimentally. The instrument can be operated using mass-selective instability scans in both the boundary and resonance ejection versions. Comparisons of performance between different versions of the device having different dimensions allowed selection of an optimized geometry with an appropriate distribution of higher-order electric fields. Comparisons made under the same conditions between the performance of a conventional cylindrical ion trap and a RIT of 4 times greater volume show an improvement of 40 times in the signal-to-noise ratio resulting from the higher ion trapping capacity of the RIT. The demonstrated capabilities of the RIT include tandem mass spectrometry, a mass resolution in excess of 1000, and a mass/charge range of 650 Th, all in a simple structure that is only 3.5 cm(3) in internal volume.  相似文献   

6.
A commercial quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been adapted for ion/ion reaction studies. To enable mutual storage of oppositely charged ions in a linear ion trap, the oscillating quadrupole field of the second quadrupole of the system (Q2) serves to store ions in the radial dimension while auxiliary radio frequency is superposed on the end lenses of Q2 during the reaction period to create barriers in the axial dimension. A pulsed dual electrospray (ESI) source is directly coupled to the instrument interface for the purpose of proton transfer reactions. Singly and doubly charged protein ions as high in mass as 66 kDa are readily formed and observed after proton-transfer reactions. For the modified instrument, the mass resolving power is approximately 8000 for a wide m/z range, and the mass accuracy is approximately 20 ppm for external calibration and approximately 5 ppm for internal calibration after ion/ion reactions. Parallel ion parking is demonstrated with a six-component protein mixture, which shows the potential application of reducing spectral complexity and concentrating certain charge states. The current system has high flexibility with respect to defining MS(n) experiments involving collision-induced dissociation (CID) and ion/ion reactions. Protein precursor and CID product masses can be determined with good accuracy, providing an attractive platform for top-down proteomics. Electron transfer dissociation ion/ion reactions are implemented by using a pulsed nano-ESI/atmospheric pressure chemical ionization dual source for ionization. The reaction between protonated peptide ions and radical anions of 1,3-dinitrobenzene formed exclusively c- and z-type fragment ions.  相似文献   

7.
A new ion soft landing instrument has been built for the controlled deposition of mass selected polyatomic ions. The instrument has been operated with an electrospray ionization source; its major components are an electrodynamic ion funnel to reduce ion loss, a 90-degree bent square quadrupole that prevents deposition of fast neutral molecules onto the landing surface, and a novel rectilinear ion trap (RIT) mass analyzer. The ion trap is elongated (inner dimensions: 8 mm x 10 mm x 10 cm). Three methods of mass analysis have been implemented. (i) A conventional mass-selective instability scan with radial resonance ejection can provide a complete mass spectrum. (ii) The RIT can also be operated as a continuous rf/dc mass filter for isolation and subsequent soft landing of ions of the desired m/ z value. (iii) The 90-degree bent square quadrupole can also be used as a continuous rf/dc mass filter. The mass resolution (50% definition) of the RIT in the trapping mode (radial ion ejection) is approximately 550. Ions from various test mixtures have been mass selected and collected on fluorinated self-assembled monolayers on gold substrates, as verified by analysis of the surface rinses. Desorption electrospray ionization (DESI) has been used to confirm intact deposition of [Val (5)]-Angiotensin I on a surface. Nonmass selective currents up to 1.1 nA and mass-selected currents of up to 500 pA have been collected at the landing surface using continuous rf/dc filtering with the RIT. A quantitative analysis of rinsed surfaces showed that the overall solution-to-solution soft landing yields are between 0.2 and 0.4%. Similar experiments were performed with rf/dc isolation of both arginine and lysine from a mixture using the bent square quadrupole in the rf/dc mode. The unconventional continuous mass selection methods maximize soft landing yields, while still allowing the simple acquisition of full mass spectra.  相似文献   

8.
High-throughput miniature cylindrical ion trap array mass spectrometer   总被引:3,自引:0,他引:3  
A fully multiplexed cylindrical ion trap (CIT) array mass spectrometer with four parallel ion source/mass analyzer/detector channels has been built to allow simultaneous high-throughput analysis of multiple samples. A multielement external chemical ionization/electron ionization source was coupled to a parallel array of CITs each of equal size (internal radius 2.5 mm), and the signal was recorded using an array of four miniature (2-mm inner diameter) electron multipliers. Using external electron ionization, the spectra of four separate samples were recorded simultaneously in real time using a four-channel preamplifier system and a data acquisition program written using LabVIEW software. These experiments mark the first demonstration of externally generated ions being successfully trapped in a miniature CIT mass analyzer. The instrument currently provides mass/charge range of approximately m/z 50-500. Average peak width is m/z 0.3, corresponding to a resolution of 1000 at m/z 300. The four-channel mass spectrometer is housed in a single vacuum manifold and operated with a single set of control electronics. The modular design of this instrument allows scale-up to many more channels of analysis for future applications in the areas of industrial process monitoring and combinatorial analysis and in the fields of proteomics and metabolomics.  相似文献   

9.
While investigating the in-source CID fragmentation of nonsteroidal antiinflammatory drugs (NSAIDs), it was noticed that the same fragment ion (nominal mass) formed in either positive or negative ion electrospray for a suite of NSAIDs. For example, ibuprofen with a molecular mass of 206, fragments to the m/z 161 ion in negative ion from its deprotonated molecule (m/z 205, [M - H]-) and fragments to the m/z 161 ion in positive ion from its protonated molecule (m/z 207, [M + H]+). This fragment ion was euphemistically called a "twin ion"because of the same nominal mass despite opposite charge. The CID fragmentation of the twin ions was confirmed also by LC/MS/MS ion trap. Accurate mass measurements in negative ion show that the loss was due to CO2 (measured loss of 43.9897 atomic mass units (u) versus calculated loss of 43.9898 u for N = 10) and in positive ion the loss is due to HCOOH (measured loss of 46.0048 u versus calculated loss of 46.0055 u, N = 10). It was realized that, in fact, the ions were not "identical mass twins of opposite charge" but separated in accurate mass by two electrons. The accurate mass measurement by liquid chromatography/time-of-flight-mass spectrometry (LC/TOF-MS) can distinguish between the two fragment ions of ibuprofen (161.13362 +/- 0.00019 and 161.13243 +/- 0.00014 for N = 20). This experiment was repeated for two other NSAIDs, and the mass of an electron was measured as the difference between the twin ions, which was 0.00062 u +/- 14.8% relative standard deviation (N = 20 analyses). Thus, the use of continuous calibration makes it possible to measure the mass of an electron within one significant figure using the NSAID solution. This result shows the importance of including electron mass in accurate mass measurements and the value of a benchmark test for LC/TOF-MS mass accuracy.  相似文献   

10.
Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer   总被引:1,自引:0,他引:1  
The development of a new high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is reported. The high-resolution capabilities of this instrument allow the direct separation of most ions from inorganic and organic species at the same nominal m/z, the quantification of several types of organic fragments (CxHy, CxHyOz, CxHyNp, CxHyOzNp), and the direct identification of organic nitrogen and organosulfur content. This real-time instrument is field-deployable, and its high time resolution (0.5 Hz has been demonstrated) makes it well-suited for studies in which time resolution is critical, such as aircraft studies. The instrument has two ion optical modes: a single-reflection configuration offers higher sensitivity and lower resolving power (up to approximately 2100 at m/z 200), and a two-reflectron configuration yields higher resolving power (up to approximately 4300 at m/z 200) with lower sensitivity. The instrument also allows the determination of the size distributions of all ions. One-minute detection limits for submicrometer aerosol are <0.04 microg m(-3) for all species in the high-sensitivity mode and <0.4 microg m(-3) in the high-resolution mode. Examples of ambient aerosol data are presented from the SOAR-1 study in Riverside, CA, in which the spectra of ambient organic species are dominated by CxHy and CxHyOz fragments, and different organic and inorganic fragments at the same nominal m/z show different size distributions. Data are also presented from the MIRAGE C-130 aircraft study near Mexico City, showing high correlation with independent measurements of surrogate aerosol mass concentration.  相似文献   

11.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion source region of the mass spectrometer and is shown to significantly enhance analyte detection in complex mixtures. Improved mass measurement accuracy and simplified product ion mass spectra were observed following FAIMS preselection and subsequent in-source CID of ions derived from pharmaceutical excipients, sufficiently close in m/z (17.7 ppm mass difference) that they could not be resolved by TOFMS alone. The FISCID-MS approach is also demonstrated for the qualitative and quantitative analysis of mixtures of peptides with FAIMS used to filter out unrelated precursor ions thereby simplifying the resulting product ion mass spectra. Liquid chromatography combined with FISCID-MS was applied to the analysis of coeluting model peptides and tryptic peptides derived from human plasma proteins, allowing precursor ion selection and CID to yield product ion data suitable for peptide identification via database searching. The potential of FISCID-MS for the quantitative determination of a model peptide spiked into human plasma in the range of 0.45-9.0 μg/mL is demonstrated, showing good reproducibility (%RSD < 14.6%) and linearity (R(2) > 0.99).  相似文献   

12.
Cai Y  Peng WP  Chang HC 《Analytical chemistry》2003,75(8):1805-1811
Mass spectra of fluorescently labeled polystyrene nanoparticles have been obtained using a combined technique of matrix-assisted laser desorption/ionization (MALDI), laser-induced fluorescence (LIF), and a dual quadrupole ion trap mass spectrometer. The spectrometer is designed in such a way that the first trap serves as a trapping and mass-analyzing device, while the second trap serves to capture and concentrate the ions ejected from the first trap for fluorescence detection. An enhancement in the LIF signal by more than 3 orders of magnitude is achieved with the help of the second trap, making mass/charge (m/z) analysis of the nanoparticles possible. Additional unique features of this mass spectrometer include that frequency scan (0.5-50 kHz) at a constant voltage (200 V), instead of voltage scan at a constant frequency, is implemented to widen the spectral analysis range of the instrument. The implementation has allowed the spectrometer to operate at relatively high buffer gas pressures (50 mTorr), crucial for effective trapping of the nanometer-sized particles generated by MALDI. We present in this report the first mass spectra of fluorescently labeled nanoparticles with a size of 27 nm using this new mass spectrometric approach. The utility of this method in the study of biological macromolecules or particles is demonstrated with dye-labeled IgG.  相似文献   

13.
Payne AH  Glish GL 《Analytical chemistry》2001,73(15):3542-3548
Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (< or = 10(-5) Torr) is not that required for optimal performance of the QITMS (10(-3) Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an approximately 1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam.  相似文献   

14.
A triple quadrupole mass spectrometer capable of ion trapping experiments has been adapted for ion/ion reaction studies. The instrument is based on a commercially available linear ion trap (LIT) tandem mass spectrometer (i.e., an MDS SCIEX 2000 Q TRAP) that has been modified by mounting an atmospheric sampling glow discharge ionization (ASGDI) source to the side of the vacuum manifold for production of singly charged anions. The ASGDI source is located line of sight to the side of the third quadrupole of the triple quadrupole assembly (Q3). Anions are focused into the side of the rod array (i.e., anion injection occurs orthogonal to the normal ion flight path). A transmission mode method to perform ion/ion reactions has been developed whereby positive ions are transmitted through the pressurized collision quadrupole (Q2) while anions are stored in Q2. The Q2 LIT is used to trap negative ions whereas the Q3 LIT is used to accumulate positive ions transmitted from Q2. Anions are injected to Q3 and transferred to Q2, where they are stored and collisionally cooled. Multiply charged protein/peptide ions, formed by electrospray, are then mass selected by the first quadrupole assembly (Q1) operated in the rf/dc mode and injected into Q2. The positive ions, including the residual precursor ions and the product ions arising from ion/ion proton-transfer reactions, are accumulated in Q3 until they are analyzed via mass-selective axial ejection for mass analysis. The parameters that affect ion/ion reactions are discussed, including pressure, nature of the gas in Q2, and operation of Q2 as a linear accelerator. Ion/ion reactions in this mode can be readily utilized to separate ions with the same m/z but largely different mass and charge, e.g., +1 bradykinin and +16 myoglobin, in the gas phase.  相似文献   

15.
The beam-type and ion trap collision-induced dissociation (CID) behaviors of protonated bovine ubiquitin ions were studied for charge states ranging from +6 to +12 on a modified triple quadrupole/linear ion trap tandem mass spectrometer. Both beam-type CID and ion trap CID were conducted in a high-pressure linear ion trap, followed by proton-transfer ion/ion reactions to reduce the charge states of product ions mostly to +1. The product ions observed under each activation condition were predominantly b- and y-type ions. Fragmentation patterns showed a much stronger dependence on parent ion charge state with ion trap CID than with beam-type CID using nitrogen as the collision gas, with preferential cleavages C-terminal to aspartic acid at relatively low charge states, nonspecific fragmentation at moderate charge states, and favored cleavages N-terminal to proline residues at high charge states. In the beam-type CID case, extensive cleavage along the protein backbone was noted, which yielded richer sequence information (77% of backbone amide bond cleavages) than did ion trap CID (52% of backbone amide bond cleavages). Collision gas identity and collision energy were also evaluated in terms of their effects on the beam-type CID spectrum. The use of helium as collision gas, as opposed to nitrogen, resulted in CID behavior that was sensitive to changes in collision energy. At low collision energies, the beam-type CID data resembled the ion trap CID data with preferential cleavages predominant, while at high collision energies, nonspecific fragmentation was observed with increased contributions from sequential fragmentation.  相似文献   

16.
A custom in-line surface-induced dissociation (SID) device has been incorporated into a commercial ion mobility quadrupole/time-of-flight mass spectrometer in order to provide an alternative and potentially more informative activation method than the commonly used collision-induced dissociation (CID). Complicated sample mixtures can be fractionated by ion mobility (IM) and then dissociated by CID or SID for further structural analysis. Interpretation of SID spectra for cesium iodide clusters was greatly simplified with IM prior to dissociation because products originating from different precursors and overlapping in m/z but separated in drift time can be examined individually. Multiple conformations of two protein complexes, source-activated transthyretin tetramer and nativelike serum amyloid P decamer, were separated in ion mobility and subjected to CID and SID. CID spectra of the mobility separated conformations are similar. However, drastic differences can be observed for SID spectra of different conformations, implying different structures in the gas phase. This work highlights the potential of utilizing IM-SID to study quaternary structures of protein complexes and provides information that is complementary to our recently reported SID-IM approach.  相似文献   

17.
Chen CH  Lin JL  Chu ML  Chen CH 《Analytical chemistry》2010,82(24):10125-10128
Up to now, all commercial matrix-assisted laser desorption/ionization (MALDI) mass spectrometers still can not efficiently analyze very large biomolecules. In this work, we report the development of a novel MALDI ion trap mass spectrometer which can enrich biomolecular ions to enhance the detection sensitivity. A charge detector was installed to measure the large ions directly. With this design, we report the first measurement of IgM with the mass-to-charge ratio (m/z) at 980?000. In addition, quantitative measurements of the number of ions can be obtained. A step function frequency scan was first developed to get a clear signal in the m/z range from 200,000 to 1,000,000.  相似文献   

18.
A specially designed mass spectrometer which allows for preparative separation of mixtures is described. This mass spectrometer allows for large ion currents, on the order of nanoamperes, to be produced by electrospray and transmitted into a high vacuum. Accumulation of nanomole quantities of collected and recovered material in several hours is demonstrated. The use of high-velocity ions reduces space charge effects at high ion currents. Separation of mass occurs simultaneously for all ions, providing a 100% duty cycle. The use of a linear dispersion magnet avoids compression at higher m/z ratios. A deceleration lens slows the ions to allow for soft landing at low kinetic energy. The ions are neutralized by ion pairing on an oxidized metal surface. Retractable landing plates allow for easy removal of the separated components.  相似文献   

19.
Thermally assisted collision-induced dissociation (TA-CID) provides increased dissociation in comparison with CID performed at ambient temperature in a quadrupole ion trap mass spectrometer. Heating the bath/collision gas during CID increases the initial internal energy of the ions and reduces the collisional cooling rate. Thus, using the same CID parameters, the parent ion can be activated to higher levels of internal energy, increasing the efficiency of dissociation and the number of dissociation pathways. The increase in the number of dissociation pathways can provide additional structural information. A consequence of the increase in initial internal energy is the ability to use less power to effect collisional activation. This allows lower q(z) values to be used and, thus, a greater mass range of product ions to be observed. TA-CID alleviates the problems associated with traditional CID and results in more available information than traditional CID.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号