首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of soil composition and dissolved organic matter on pesticide sorption   总被引:24,自引:0,他引:24  
The effect of the solid and dissolved organic matter fractions, mineral composition and ionic strength of the soil solution on the sorption behaviour of pesticides were studied. A number of soils, chosen so as to have different clay mineral and organic carbon content, were used to study the sorption of the pesticides atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), 2,4-D ((2,4-dichlorophenoxy)acetic acid), isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) and paraquat (1,1'-dimethyl-4,4'-bipyridinium) in the presence of low and high levels of dissolved organic carbon and different background electrolytes. The sorption behaviour of atrazine, isoproturon and paraquat was dominated by the solid state soil components and the presence of dissolved organic matter had little effect. The sorption of 2,4-D was slightly affected by the soluble organic matter in the soil. However, this effect may be due to competition for adsorption sites between the pesticide and the soluble organic matter rather than due to a positive interaction between the pesticide and the soluble fraction of soil organic matter. It is concluded that the major factor governing the sorption of these pesticides is the solid state organic fraction with the clay mineral content also making a significant contribution. The dissolved organic carbon fraction of the total organic carbon in the soil and the ionic strength of the soil solution appear to have little or no effect on the sorption/transport characteristics of these pesticides over the range of concentrations studied.  相似文献   

2.
Numerous studies have shown that sorption of organic contaminants in soils is dominated by the natural organic carbon content (C org) of the soil. However, it is still under discussion whether sorption processes are fully reversible or whether an irreversibly sorbed contaminant fraction remains in the soil. This is especially important when considering soil remediation measures and its targets. In multi-stage sorption-desorption batch experiments with TCE, PCE, ortho-xylene and para-xylene and with the sorbents activated carbon, charcoal and a hydrophobic zeolite Y-200, the reversibility of sorption was studied. It could be shown that the structural features of the sorbents are of ample importance for the occurrence of a desorption-resistant fraction. While sorption was mainly reversible for the micro-porous zeolite Y-200 with a rigid pore network, charcoal and the activated carbon showed significant desorption hysteresis. However, following a subsequent sorption step, this fraction eventually desorbs and is re-mobilized.  相似文献   

3.
The influence of dissolved organic matter (DOM) on the sorption of four phenols, 2,4,6-trichlorophenol (2,4,6-TCP), pentachlorophenol (PCP), 2,4-dinitrophenol (2,4-DNP) and 2-methyl-4,6-dinitrophenol (2-M-4,6-DNP), onto sandy aquifer material at different pH values was investigated using flow through column experiments. The pH-dependent sorption of the chlorinated phenols 2,4,6-TCP and PCP was not significantly affected by DOM (measured as dissolved organic carbon, DOC), whereas in the case of nitrophenols a significant lower retardation was found, depending on the DOC concentration and pH value of the aqueous solution. Sorption decreases with increasing DOC concentration, which indicates a binding of these compounds by DOM. The degree of sorption reduction depends on the pH value and increases with increasing fraction of neutral species. The different behaviour of nitrophenols in comparison to the chlorophenols is assumed to be a result of specific charge-transfer interactions. A combined sorption and complex formation model was used to describe the effect of pH and DOC concentration on the sorption of nitrophenols onto aquifer material and to estimate binding coefficients of neutral nitrophenols on DOM.  相似文献   

4.
Park JH  Feng Y  Cho SY  Voice TC  Boyd SA 《Water research》2004,38(18):3881-3892
Soil-chemical contact time (aging) is an important determinant of the sorption and desorption characteristics of the organic contaminants and pesticides in the environment. The effects of aging on mechanism-specific sorption and desorption of atrazine were studied in soil and clay slurries. Sorption isotherm and desorption kinetic experiments were performed, and soil-water distribution coefficients and desorption rate parameters were evaluated using linear and non-linear sorption equations and a three-site desorption model, respectively. Aging time for sorption of atrazine in sterilized soil and clay slurries ranged from 2 days to 8 months. Atrazine sorption isotherms were nearly linear (r(2)>0.97) and sorption coefficients were strongly correlated to soil organic carbon content. Sorption distribution coefficients (K(d)) increased with increase in age in all five soils studied, but not for K-montmorillonite. Sorption non-linearity did not increase with increase in age except for the Houghton muck soil. Desorption profiles were well described by the three-site desorption model. The equilibrium site fraction (f(eq)) decreased and the non-desorbable site fraction (f(nd)) increased as a function of aging time in all soils. For K-montmorillonite, f(nd) approximately 0 regardless of aging, showing that aging phenomena are sorbent/mechanism specific. In all soils, it was found that when normalized to soil organic matter content, the concentration of atrazine in desorbable sites was relatively constant, whereas that in non-desorbable site increased. This, and the lack of aging effects on desorption from montmorillonite, suggests that sorption into non-desorbable sites of soil organic matter is primary source of increased atrazine sorption in soils during aging.  相似文献   

5.
The distribution and geochemical behaviour of anionic surfactants (AS) determined as ethyl violet active substances (EVAS) were studied in Lake Biwa, Japan. We determined the vertical distributions of dissolved EVAS (DEVAS), suspended particulate EVAS (PEVAS), particulate organic carbon (POC) and the PEVAS/POC ratio. Statistical analyses conducted using plots of PEVAS versus POC and PEVAS/ Chlorophyll‐a (Chl‐a) versus POC/Chl‐a revealed that the distributions of DEVAS and PEVAS were affected by the concentrations of freshly produced POC and aged POC and by the pH of the lake water. Adsorption and desorption of EVAS onto the POC phase were found to be important mechanisms regulating the distribution and environmental/geochemical behaviour of EVAS in the lake. The organic carbon‐normalized particle–water‐partitioning coefficient, Koc, for EVAS was also estimated and compared with that for nonylphenol.  相似文献   

6.
Sorption of hydrophobic pollutants on natural sediments   总被引:11,自引:0,他引:11  
The sorption of hydrophobic compounds (aromatic hydrocarbons and chlorinated hydrocarbons) spanning a concentration range in water solubility from 500 parts per trillion (ppt) to 1800 parts per million (ppm) on local (North Georgia) pond and river sediments was investigated. The sorption isotherms were linear over a broad range of aqueous phase pollutant concentrations. The linear partition coefficients (Kp) were relatively independent of sediment concentrations and ionic strength in the suspensions. The Kp ś were directly related to organic carbon content for given particle size isolates in the different sediments. On an organic carbon basis (Koc = Kp/fraction) organic carbon), the sand fraction (> 50 μm particle size) was a considerably less effective sorbent (50–90% reduction in Koc) than the fines fraction (> 50 μm particles). Differences in sorption within the silt and clay fractions were largely related to differences in organic carbon content. Reasonable estimates of Kocś can be made from octanol/water distribution coefficients, which are widely catalogued or easily measured in the laboratory.  相似文献   

7.
Concentrations of dissolved organic carbon (DOC) in surface waters are increasing across Europe and parts of North America. Several mechanisms have been proposed to explain these increases including reductions in acid deposition, change in frequency of winter storms and changes in temperature and precipitation patterns. We used two modelling approaches to identify the mechanisms responsible for changing surface water DOC concentrations. Empirical regression analysis and INCA-C, a process-based model of stream-water DOC, were used to simulate long-term (1986-2003) patterns in stream water DOC concentrations in a small boreal stream. Both modelling approaches successfully simulated seasonal and inter-annual patterns in DOC concentration. In both models, seasonal patterns of DOC concentration were controlled by hydrology and inter-annual patterns were explained by climatic variation. There was a non-linear relationship between warmer summer temperatures and INCA-C predicted DOC. Only the empirical model was able to satisfactorily simulate the observed long-term increase in DOC. The observed long-term trends in DOC are likely to be driven by in-soil processes controlled by SO42− and Cl deposition, and to a lesser extent by temperature-controlled processes. Given the projected changes in climate and deposition, future modelling and experimental research should focus on the possible effects of soil temperature and moisture on organic carbon production, sorption and desorption rates, and chemical controls on organic matter solubility.  相似文献   

8.
An investigation into the adsorption and desorption of polydimethylsiloxane, PCBs, cadmium nitrate, copper sulfate, nickel nitrate and zinc nitrate by river sediments was carried out using either a flow-through system or a semi-static system. The material balance in the sediment compartment could be explained by the equation, dCs/dT= K1Cw-K2Cs. The adsorption rate constants (K1), desorption rate constants (K2) and concentration factors (K1/K2) were calculated. For hydrophobic chemicals, the K1's were independent of water solubility, but the K2's were relatively related to water solubility. For both hydrophobic chemicals and heavy metals, the concentration factors per fraction organic carbon were similar to the soil sorption coefficients (Koc), expressed on a organic carbon basis.  相似文献   

9.
Several important parameters for the operation of ion exchange resins in water treatment, such as breakthrough capacity, maximum flow rate, efficiency and reversibility of organic matter sorption and desorption, exhibit a close connection with the ion exchange rate. Therefore this value, expressed as the exchange half-time(l0,5) can be used as a criterion for a proper resin type choice and can also help to judge its use for obtaining treated water of required composition.The sorption and desorption rates of HCl, caproic acid and sulfosalicylic acid by styrene and acrylic weak base resins were estimated and the results obtained with particular resins were compared. Attention has been paid to the effect of gelular and macroporous matrix and solution concentration. Acrylic resins are preferable for sorption and desorption of HCl at low concentrations, at higher concentrations macroporous-styrene resins are better. Sorption of low-molecular organic acids is primarily controlled by selectivity and proceeds faster on acrylic resins at all concentrations. Desorption is governed by the concentration of the elution solution, rather than by selectivity and occurs faster on macroporous styrene resins. The macroporous matrix generally has a substantially smaller kinetic advantage for acrylic than for styrene weak base resins.  相似文献   

10.
Batch sorption experiments of the insecticide imidacloprid by ten widely different Spanish soils were carried out. The sorption was studied for the active ingredient and its registered formulation Confidor. The temperature effect was studied at 15 degrees C and 25 degrees C. The addition of a vermicompost from spent grape marc (natural and ground), containing 344 g kg(-1) organic carbon, on the sorption of imidacloprid by two selected soils, a sandy loam and a silty clay loam, having organic carbon content of 3.6 g kg(-1) and 9.3 g kg(-1), respectively, was evaluated. Prior to the addition of this vermicompost, desorption isotherms with both selected soils, were also performed. The apparent hysteresis index (AHI) parameter was used to quantify sorption-desorption hysteresis. Sorption coefficients, K(d) and K(f), for the active ingredient and Confidor(R) in the different soils were similar. Sorption decreased with increasing temperature, this fact has special interest in greenhouse systems. A significant correlation (R(2)=0.965; P<0.01) between K(f) values and the organic carbon (OC) content was found, but some soils showed higher sorption coefficients than that expected from their OC values. The normalized sorption coefficients with the soil organic carbon content (K(oc)) were dispersed and low, implying that other characteristics of soils could contribute to the retention capacity as well. The spent grape marc vermicompost was an effective sorbent of this insecticide (K(f)=149). The sorption of imidacloprid increased significantly in soils amended with this vermicompost. The most pronounced effect was found in the sandy loam soil with low OC content, where the addition of 5% and 10% of vermicompost increased K(f) values by 8- and 15-fold, respectively. Soil desorption of imidacloprid was slower for the soil with the higher OC and clay content.  相似文献   

11.
The sorption of chlorinated C1- and C2-hydrocarbons and monocyclic aromatic hydrocarbons on sea sediment was studied with a miscible displacement technique. Detection was done either by on-line UV-detection or off-line GC-analysis. Equilibrium partitioning coefficients between the salt water phase and the marine sediment were determined for 11 compounds by fitting their breakthrough curves to a local sorption equilibrium model. Based on the obtained partitioning coefficients and on the measurement of the organic carbon content of the sediment, the sorption into the organic carbon fraction was considered. Log Koc data (Koc = organic carbon-water partitioning coefficient) were calculated. A linear relationship between the log Koc values and the log Kow data (Kow = octanol-water partitioning coefficient) was found (r = 0.94, n = 11). However, the sorption was lower than expected from the log Kow data. Finally, the implications of the experimental results for the sorption behaviour of the compounds in the marine environment were evaluated. It was concluded that the sea sediment does not act as an important sink for these anthropogenic compounds.  相似文献   

12.
Soil-aquifer treatment is a wastewater treatment and reclamation option to facilitate beneficial water reuse. The fate of wastewater originated micropollutants in the soil-aquifer system is important to understand. In the study the sorption behavior of potential wastewater indicators such as two antiepileptic drugs (carbamazepine, primidone), one sulfonamide (sulfamethoxazole), and one corrosion inhibitor (benzotriazole) were determined with three natural soils (Lufa 2.2, Euro Soil 5, and Wulpen sand) that differed in pH, organic carbon content and particle size distribution. As aqueous phase a 0.01 M CaCl2 solution as well as the effluent of a municipal wastewater treatment plant was used. Affinities of all analytes to the soil increased from Wulpen sand, over Lufa 2.2 to Euro Soil 5, indicating that the organic carbon contents might be crucial for sorption. Isotherms were well described by the Freundlich model. Sorption was mainly close to linear (n = 0.93-1.07) for most target compounds and soils. Desorption gave rise to a small hysteresis only for Euro Soil 5 which was likely artificial, due to slow desorption kinetics beyond 24 h used in the experiment. All sorption studies confirmed that Carbamazepine, Benzotriazole and Primidone are appropriate to be used as wastewater indicator substances based on their low sorption affinity to soils, while the suitability of Sulfamethoxazole is limited due to the formation of non-extractable residues, especially at lower pH values.  相似文献   

13.
Peng Wang 《Water research》2009,43(5):1448-1456
In this study, a low energy separation method was employed to separate water dispersible clay-, silt-, and sand-sized fractions. The batch equilibrium method was used to conduct atrazine and diuron sorption/desorption experiments with the bulk soils and their size fractions separately. A Freundlich sorption model provided the best fit for all sorption and desorption data. A mass balance calculation, taking into account the pesticide concentration differences in the size fraction and bulk soil, showed that pesticide sorption onto the different size fractions reproduces well the total amount of the pesticide sorbed onto the bulk soils. Due to their higher soil organic carbon content, the clay fractions were much more effective sorbents for the pesticides than the bulk soils, silt, and sand fractions. For all soils, the amount of the pesticide sorbed onto the clay fractions was more than 20% of the total amount of the pesticide sorbed by the bulk soils even though the clay fractions in these soils were only 5.3-14.0% (by weight). The clay fractions had the highest desorption hysteresis among all size fractions and the bulk soils, followed by silt fractions, implying the clay fractions had the strongest bound and least desorbable pesticide molecules. Our results suggest that attention should be paid to the pesticide sorbed to the smallest colloids, the water dispersible fraction, which can be potentially mobilized under field conditions, leading to wide spreading of contamination.  相似文献   

14.
The chlorination reactions of glyphosate and glycine in water were thoroughly studied. Utilizing isotopically enriched (13C and 15N) samples of glycine and glyphosate and 1H, 13C, 31P, and 15N NMR spectroscopy we were able to identify all significant terminal chlorination products of glycine and glyphosate, and show that glyphosate degradation closely parallels that of glycine. We have determined that the C1 carboxylic acid carbon of glycine/glyphosate is quantitatively converted to CO2 upon chlorination. The C2 methylene carbon of glycine/glyphosate is converted to CO2 and methanediol. The relative abundance of these two products is a function of the pH of the chlorination reactions. Under near neutral to basic reaction conditions (pH 6-9), CO2 is the predominant product, whereas, under acidic reaction conditions (pH < 6) the formation of methanediol is favored. The C3 phosphonomethylene carbon of glyphosate is quantitatively converted to methanediol under all conditions tested. The nitrogen atom of glycine/glyphosate is transformed into nitrogen gas and nitrate, and the phosphorus moiety of glyphosate produces phosphoric acid upon chlorination. In addition to these terminal chlorination products, a number of labile intermediates were also identified including N-chloromethanimine, N-chloroaminomethanol, and cyanogen chloride. The chlorination products identified in this study are not unique to glyphosate and are similar to those expected from chlorination of amino acids, proteins, peptides, and many other natural organic matters present in drinking water.  相似文献   

15.
Adi Maoz 《Water research》2010,44(3):981-4482
Pharmaceutical compounds and dissolved organic matter (DOM) are co-introduced into the environment by irrigation with reclaimed wastewater and/or application of biosolids. In this study, we evaluate the role and mechanism of interaction of the pharmaceuticals naproxen and carbamazepine with structural fractions of biosolids-derived DOM. Sorption interactions were estimated from dialysis-bag experiments at different pHs.Sorption of naproxen and carbamazepine by the hydrophobic acid fraction exhibited strong pH-dependence. With both pharmaceuticals, the highest sorption coefficients (KDOC) were at pH 4. With the hydrophobic neutral fraction, pH affected only naproxen sorption (decreasing with increasing pH). Among the hydrophilic DOM fractions, the hydrophilic acid fraction exhibited the highest KDOC value for carbamazepine, probably due to their bipolar character. In the hydrophilic acid fraction-naproxen system, significant anionic repulsion was observed with increasing pH. The hydrophilic base fraction contains positively charged functional groups. Therefore with increasing ionization of naproxen (with increasing pH), KDOC to this fraction increased. The hydrophilic neutral fraction exhibited the lowest KDOC with both studied pharmaceuticals.The KDOC value of carbamazepine with the bulk DOM sample was higher than the calculated KDOC value based on sorption by the individual isolated fractions. The opposite trend was observed with naproxen at pH 8: the calculated KDOC value was higher than the value obtained for the bulk DOM. These results demonstrate that DOM fractions interact with each other and do not act as separate sorption domains.  相似文献   

16.
Sorption/partition of several organic solute (contaminants) of a wide range of hydrophobicities was studied on clay and on clay-humic complexes representing aquifer-soil systems. The role of the mineral and of the organic (humic) fractions was elucidated and a model considering both fractions in the sorption process was proposed. The adsorption constants on humic (organic fraction), K, were 8–20 times higher than on “pure” clay, Km. But with soils with low to medium organic fractions (ƒ < 0.05) the contribution of the clay mineral to adsorption was quite significant, in spite of the fact that half of the sorption sites on the mineral surface were blocked by the humic. In the range of very low organic content in aquifer soil a non-linear pattern going through a minimum is observed between the overall partition coefficient and soil-organic fraction, transforming to the familiar linear relationship at higher ƒs. Both the K and Km followed the linear-free energy relationship to the octanol-water partition coefficient Kow.  相似文献   

17.
《Water research》1996,30(1):13-20
Sorption and desorption of pentachlorophenol (PCP) to microbial biomass was studied in a series of laboratory experiments. Equilibrium conditions for sorption and desorption were established within 5 min after a step change in concentrations. Linear sorption isotherms were observed at up to 80 μg/l of dissolved PCP at pH 6, and up to 160 μg/l at pH 8. Linear sorption coefficients were primarily influenced by pH, although ionic strength (owing to pH-buffering) and the concentration of dissolved organic matter also had an impact. The influence of these factors was quantified by a simple mathematical model, which included separate sorption coefficients for the neutral and dissociated fraction of PCP.  相似文献   

18.
The objective of this study was to examine sorption of a suite of 19 trace organic contaminants (TOrCs) to activated sludge. Compounds examined in this study included neutral, nonionized TOrCs as well as acidic TOrCs which may carry a negative charge and basic TOrCs which may carry a positive charge at the pH of wastewater. These TOrCs were evaluated to examine how sorptive behavior might differ for TOrCs in different states of charge. Additionally, multiple sludges from geographically and operationally different wastewater treatment plants were studied to elicit how solid-phase characteristics influence TOrC sorption. Characterization of sludge solids from 6 full scale treatment facilities and 3 bench-scale reactors showed no significant difference in fraction organic carbon (foc) and cation exchange capacity (CEC). Sorption experiments demonstrated that sorption of TOrCs also exhibits little variation between these different sludges. Organic carbon normalized partition coefficients (log Koc) were determined as a measure of sorption, and were found to correlate well with octanol-water partition coefficients (log Kow) for nonionized TOrCs, and log Dow for anionic TOrCs where log Dow is greater than 2. These data were used to construct a linear free energy relationship (LFER), which was comparable to existing LFERs for sorption onto sludge. No trend in sorption was apparent for the remaining anionic TOrCs or for the cationic TOrCs. These data suggest that predicting sorption to activated sludge based on Kow values is a reasonable approach for neutral TOrCs using existing LFERs, but electrostatic (and likely other) interactions may govern the sorptive behavior of the charged organic chemicals to sludge.  相似文献   

19.
Xue S  Zhao QL  Wei LL  Ren NQ 《Water research》2009,43(2):499-4736
Soil column experiments were performed to investigate the behavior and characteristics of dissolved organic matter (DOM) during soil aquifer treatment (SAT), and to differentiate among the mechanisms responsible for the changes in the structural and functional properties of DOM during SAT. To determine the biological transformation of DOM, biodegradability tests using a biodegradation-column system were conducted. DOM was fractionated using XAD resins into 5 fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Dissolved organic carbon (DOC) was removed by 70% during SAT, and the sorption and anaerobic biodegradation in SAT led to a DOC reduction of 27.4%. The significant changes in fluorescence properties of DOM were observed during SAT. However, the sorption and anaerobic biodegradation in SAT seemed to have no significant effect on the chemical structure of fluorescing constituents in DOM. The DOM fractions exhibited different changes in Fourier-transform infrared (FT-IR) spectra characteristics during SAT. Biodegradation resulted in the enrichment of aromatic structures and the decreased content of the oxygen-containing functional groups, such as CO and C-O, in DOM. On the other hand, the production of C-O and amide-2 functional groups occurred as a result of the sorption combined with anaerobic biodegradation in SAT.  相似文献   

20.
Degradation of pesticides in soils is both spatially variable and also one of the most sensitive factors determining losses to surface water and groundwater. To date, no general guidance is available on suitable approaches for dealing with spatial variation in pesticide degradation in catchment or regional scale modeling applications. The purpose of the study was therefore to study the influence of various soil physical, chemical and microbiological characteristics on pesticide persistence in the contrasting cultivated soils found in a small (13 km2) agricultural catchment in Sweden and to develop and test a simple model approach that could support catchment scale modeling. Persistence of bentazone, glyphosate and isoproturon was investigated in laboratory incubation experiments. Degradation rate constants were highly variable with coefficients of variation ranging between 42 and 64% for the three herbicides. Multiple linear regression analysis and Mallows Cp statistic were employed to select the best set of independent parameters accounting for the variation in degradation. Soil pH and the proportion of active microorganisms (r) together explained 69% of the variation in the bentazone degradation rate constant; the Freundlich sorption co-efficient (Kf) and soil laccase activity together explained 88% of the variation in degradation rate of glyphosate, while soil pH was a significant predictor (p < 0.05) for isoproturon persistence. However, correlations between many potential predictor variables made clear interpretations of the statistical analysis difficult. Multiplicative models based on two predictors chosen ‘a priori’, one accounting for microbial activity (e.g. microbial respiration, laccase activity or the surrogate variable soil organic carbon, SOC) and one accounting for the effects of sorption on bioavailability, showed promise to support predictions of degradation for large-scale modeling applications, explaining up to 50% of the variation in herbicide persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号