首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
基于遗传算法和模型仿真的调度规则决策方法   总被引:3,自引:1,他引:3  
为了完成特定生产环境下的调度规则选择问题,提出一种将遗传算法和过程仿真相结合的调度规则求解方式。在该求解方式中,遗传算法采用分段整数编码,每个染色体都代表一组可用于描述具体调度方案的规则组合;遗传操作包括选择、交叉、变异三种类型;为获得适应度函数值,利用基于某扩展Petri网的生产过程模型进行仿真,以在每一代种群中,得到与每个染色体相对应的各项性能指标值,进而以一种集成层次分析法和方案模糊评判的决策优化方法求取相应的适应度函数值。另外,为了改善串行遗传算法不切实际的解答时间,用主从式并行遗传算法代替传统遗传算法,保证了解在时间上和质量上的可行性。  相似文献   

2.
径流叶片扩压器的优化设计对提高离心风机的静压效率有重要作用。基于NACA65平面叶栅试验数据和叶栅保角变换方法,建立径流叶片扩压叶栅的气动设计方法,解决了径流叶栅气动设计中基准叶型的转换问题。通过对叶型的参数化和应用遗传算法的优化,可以进一步优化叶片安装角和局部型线,控制叶片表面的流动分布,降低叶栅总压损失和出口气流落后角,相关算例证明了本文方法的可行性。  相似文献   

3.
透平叶栅自动气动优化设计方法   总被引:2,自引:1,他引:1  
为提高叶栅的气动性能,提出基于能量法的叶栅自动设计参数化方法,结合自适应差分进化算法和Reynolds-Averaged Navier-Stokes (RANS)方程求解技术,提出适用于透平叶栅气动优化设计的自动气动优化算法。以总压恢复系数最高为目标函数,在满足流量和出口气流角约束条件下,利用提出的气动优化算法对一小展弦比后加载叶栅进行了自动气动优化设计。优化后,叶栅的总压恢复系数提高了0.7%,叶栅的气动性能明显提高。优化结果表明该算法具有良好的优化性能和应用前景。  相似文献   

4.
提出了以计算工况液力变矩比最大为目标函数的优化设计模型,采用遗传算法对各工作轮的叶栅进出口角进行优化,使计算工况最高效率提高,改善了液力变矩器的经济性。将该方法应用于YB380型液力变矩器叶栅进出口角的优化,结果表明,通过优化使计算工况最高效率由0.866提高到0.9,从而证明本方法的可行性。  相似文献   

5.
为研究压气机叶栅吹吸气体对附面层分离控制和气动性能的影响,利用数值计算的方法对叶栅流场进行模拟。首先研究吸气量对叶栅气动性能的影响规律,研究结果表明,当吸气孔的位置在距离叶片前缘60%的轴向弦长处时,存在一个最佳吸气量,当吸气量等于进气量的0.8%时,叶栅吸气对附面层分离的抑制效果最佳,对压比的提升最明显。提出四种叶栅开孔吹吸气方案,即吸附式叶栅、吸吹式叶栅、吹吸式叶栅和双吸式叶栅,通过流场和气动性能的对比,发现双吸式叶栅对附面层分离的抑制效果和对气动性的改善效果均最为显著。  相似文献   

6.
遗传算法引导搜索的主要依据就是个体的适应度值,因此适应度函数的设计显得尤为重要。本文兼顾保持种群的多样性和算法的收敛性,提出了一种基于指数变换的、指数系数可随进化代数动态调整的非线性适应度函数。以两个典型的测试函数为例,在相同的遗传操作和参数下,分别采用本文提出的适应度函数、线性拉伸变换及一般的指数变换适应度函数进行优化计算,计算结果表明采用提出的新适应度函数能极大地提高算法的优化精度、收敛速度和收敛概率。  相似文献   

7.
翼型冠是控制涡轮叶片叶顶泄漏流动的一种叶顶结构。在翼型冠涡轮叶栅气动性能的数值模拟中,为降低计算成本,本文采用了一种基于源项的CFD技术。该方法无需构建翼型冠真实几何结构和生成贴体网格,只需在叶顶附近构建源项域并采用均匀网格进行离散,随后在网格点上定义材料多孔度,并在控制方程中引入与多孔度有关的源项函数。采用基于源项的数值模拟方法,首先计算了某一翼型冠涡轮平面叶栅的气动流场,并分析均匀网格尺寸和湍流模型方程源项对计算结果的影响。然后,在翼型冠源项基础上,分别增加了密封齿和叶顶喷气源项,以研究源项法在有密封齿和有叶顶喷气翼型冠叶栅性能计算中的准确性。通过与基于贴体网格(即真实结构)的数值模拟结果相对比,发现源项法计算能够较准确地评估翼型冠、密封齿和叶顶喷气对涡轮叶栅气动性能的影响。此外,降低均匀网格尺寸能提高源项法的可靠性。研究有助于发展用于模拟包含任意复杂结构流动问题的计算方法,能为基于源项法的翼型冠叶顶结构优化提供快速准确的数值模拟工具。  相似文献   

8.
本文采用遗传算法(Gene Algorithm)用于供水系统的多泵组合和变频调节的复杂的优化计算,给出了优化计算的编码、译码和适应度函数表达式。计算结果表明,遗传算法非常适用于既有离散量又有连续量的供水系统的非线性优化。  相似文献   

9.
该文采用面向对象的编程技术,通过调用OpenGL函数,用VC++语言编制了液力变矩器工作轮循环圆和叶片的交互式集成可视化设计程序,构建了叶片形状设计的数学模型及性能评价模型。基于遗传算法进行了以最高效率和高效区范围为优化目标的叶栅系统优化计算和分析,绘制性能曲线,并利用Ansys—CFX软件,对优化前后的结果进行了三维流场分析。通过实例验证表明,优化设计的结果是合理的。  相似文献   

10.
采用结合进化算法和单纯形法的复合进化算法为优化算法,对跨音速轴流压气机叶栅进行气动优化设计。气动性能评价采用Reynolds平均Navier Stokes方程求解技术,采用Baldwin Lomax紊流模型封闭求解的方程。优化设计目标是最大化静压比。设计变量是叶栅型线的Bezier曲线控制点坐标。优化设计结果表明优化设计得到的叶栅具有高静压比和良好的气动性能,同时证明了复合进化算法是一种高效寻优算法。  相似文献   

11.
A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.  相似文献   

12.
The multidisciplinary design optimization method, which integrates aerodynamic performance and structural stability, was utilized in the development of a single-stage transonic axial compressor. An approximation model was created using artificial neural network for global optimization within given ranges of variables and several design constraints. The genetic algorithm was used for the exploration of the Pareto front to find the maximum objective function value. The final design was chosen after a second stage gradient-based optimization process to improve the accuracy of the optimization. To validate the design procedure, numerical simulations and compressor tests were carried out to evaluate the aerodynamic performance and safety factor of the optimized compressor. Comparison between numerical optimal results and experimental data are well matched. The optimum shape of the compressor blade is obtained and compared to the baseline design. The proposed optimization framework improves the aerodynamic efficiency and the safety factor.  相似文献   

13.
Sectional aerodynamic design optimization was performed to enhance the aerodynamic performance of horizontal axis wind turbine rotor blades based on a computational fluid dynamics technique. The proposed sectional optimization framework consists of airfoil section contour modeling by the PARSEC shape function and a modified feasible direction search algorithm. To enhance the aerodynamic performance of wind turbine rotor blades, the objective of the design framework was set to maximize the lift-over-drag ratio for each design section. A two-dimensional Navier-Stokes flow solver coupled with a transition turbulence model was used to evaluate the aerodynamic performance during the iterative design optimization procedure. The sectional flow conditions were extracted from the flow of a three-dimensional rotor blade configuration. The design framework was applied to the National Renewable Energy Laboratory Phase VI rotor blade. The design optimization was conducted at nine spanwise sections of the rotor blade. To validate the present methodology, the aerodynamic performances of the original baseline rotor and the rotor after the design optimization were compared by using a three-dimensional Navier-Stokes flow solver. It was found that approximately 11% of torque enhancement was achieved after the aerodynamic shape design optimization.  相似文献   

14.

In the optimization design of a pre-bend wind turbine blade, there is a coupling relationship between blade aerodynamic shape and structural layup. The evaluation index of a wind turbine blade not only shows on conventional ones, such as Annual energy production (AEP), cost, and quality, but also includes the size of the loads on the hub or tower. Hence, the design of pre-bend wind turbine blades is a true multi-objective engineering task. To make the integrative optimization design of the pre-bend blade, new methods for the blade’s pre-bend profile design and structural analysis for the blade sections were presented, under dangerous working conditions, and considering the fundamental control characteristics of the wind turbine, an integrated aerodynamic-structural design technique for pre-bend blades was developed based on the Multi-objective particle swarm optimization algorithm (MOPSO). By using the optimization method, a three-dimensional Pareto-optimal set, which can satisfy different matching requirements from overall design of a wind turbine, was obtained. The most suitable solution was chosen from the Pareto-optimal set and compared with the original 1.5 MW blade. The results show that the optimized blade have better performance in every aspect, which verifies the feasibility of this new method for the design of pre-bend wind turbine blades.

  相似文献   

15.
基于数值优化方法的轴流压气机叶片设计与分析   总被引:1,自引:0,他引:1  
高坤  楚武利  董万峰 《流体机械》2007,35(6):18-23,4
基于商业软件NUMECA的叶轮机械全三维优化设计平台Design3D,采用三维N-S方程流场计算、网格自动生成、三维叶片参数化造型与遗传算法寻优相结合的方法,对一跨音速轴流压气机叶轮进行了三维叶片型线优化设计.优化目标是在流量、总压比不减小的情况下,降低总压损失,以提高其整体效率.优化叶片与原叶片相比,总压损失显著降低,等熵效率提高了1.285%,同时总压比和流量也都得到了提高.通过流场分析,可以看出优化叶片性能的提高主要是源于中上部叶展区域的总压损失的减小,而总压损失的减小则主要归功于分离区的减小和激波的削弱.  相似文献   

16.
基于遗传算法的叶型气动优化设计   总被引:2,自引:0,他引:2  
于荣彬 《广西机械》2014,(1):64-65,69
运用B-Spline开发了实现叶型吸力面、压力面型线与中弧线、厚度分布规律相互转化的程序,开发了可交互定义中弧线、厚度分布规律进而用于设计叶型的程序,并开发了基于遗传算法的叶型气动优化设计平台.进行了优化设计算例校验,验证了气动优化平台的可用性.  相似文献   

17.
几何遗传算法由于其独特的变量染色体表达和简易的编解码方式特别适合于对具有封闭轮廓线的形状优化问题的求解 (如翼型叶片的优化设计等 )。本文首次将几何遗传算法应用于流体机械中离心扩压器叶栅叶型的改进设计 ,所取得的结果令人满意。  相似文献   

18.
以体积最小为目标函数,建立了齿轮传动优化设计数学模型,并用外部惩罚函数法将该问题转化为无约束优化问题。针对遗传算法的局限性,采用整数编码和实数编码结合的混合编码,并调整了适应函数,采用随机多父辈适应函数值加权交叉和自适应变异操作,结合了模拟退火算法,给出了初温的确定方法,从而形成了混合遗传算法。该算法能够有效地减少不可行解的产生,提高收敛速度,避免早熟收敛。算例说明,该优化方法有效、实用。  相似文献   

19.
A genetic algorithm (GA)-based method is proposed to solve the nonlinear optimization problem of minimum zone cylindricity evaluation. First, the background of the problem is introduced. Then the mathematical model and the fitness function are derived from the mathematical definition of dimensioning and tolerancing principles. Thirdly with the least squares solution as the initial values, the whole implementation process of the algorithm is realized in which some key techniques, for example, variables representing, population initializing and such basic operations as selection, crossover and mutation, are discussed in detail. Finally, examples are quoted to verify the proposed algorithm. The computation results indicate that the GA-based optimization method performs well on cylindricity evaluation. The outstanding advantages conclude high accuracy, high efficiency and capabilities of solving complicated nonlinear and large space problems.  相似文献   

20.
Application of the multiobjective evolutionary algorithms to the aerodynamic optimization design of a centrifugal impeller is presented. The aerodynamic performance of a centrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. The typical centrifugal impeller is redesigned for maximization of the pressure rise and blade load and minimization of the rotational total pressure loss at the given flow conditions. The Bezier curves are used to parameterize the three-dimensional impeller blade shape. The present method obtains many reasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailed observation of the certain Pareto optimal design demonstrates the feasibility of the present multiobjective optimization method tool for turbomachinery design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号