首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(16):18124-18127
In this work, SiO2 doped SnO2-Zn2SnO4 ceramic composites with excellent varistor and dielectric properties were prepared through traditional ceramic processing. The obtained nonlinear coefficient α was as high as 9.6, and the breakdown electrical field EB and leakage current density JL was as low as 5.9 V/mm and 62 μA/cm2, respectively. At a low frequency of 40 Hz, the relative permittivity εr measured at room temperature was higher than 2.5×104. The nonlinear decrease of the semicircle diameter in the complex impedance spectra with increasing DC bias voltage indicates that the grain boundary effect is an important origin of the varistor and giant permittivity properties. With an increase of temperature, the relaxor peak of the imaginary part M″ of the complex electric modulus shifted to high frequency and the activation energy Ea obtained from the M″ spectrum was about 0.31 eV, much lower than the grain boundary barrier height ϕb. The results suggest that other mechanisms may also be responsible for the giant permittivity property besides grain boundary barriers.  相似文献   

2.
《Ceramics International》2017,43(11):8018-8022
In this work, Sm2O3- and SiO2-codoped SnO2-Zn2SnO4 ceramic varistors were prepared through traditional ceramic processing, and the effect of Sm2O3 on the resulting microstructure and electrical properties was investigated. The results demonstrated that the ceramics were composed mainly of SnO2 and Zn2SnO4, and Sm was distributed homogeneously in the grains and along the grain boundaries. With 0.2 mol% Sm2O3 doping, the grain growth was obviously promoted. Further increases in Sm2O3 to 0.4 mol% resulted in trace amount of SiO2 and segregations containing elemental Sm via X-ray diffraction patterns and microstructure photos, respectively. In the sample doped with 0.3 mol% Sm2O3, optimal electrical characteristics of α=9.4, EB=10 V/mm, JL=46 μA/cm2 and ε′=1.2×104 were obtained. Simultaneously, the sample doped with 0.3 mol% Sm2O3 had the lowest conductance activation energy of 0.16 eV at temperatures lower than 110 °C. This good performance indicates that Sm2O3- and SiO2-codoped SnO2-Zn2SnO4 composite ceramics are viable candidate for the manufacture of capacitor-varistor functional devices.  相似文献   

3.
《Ceramics International》2022,48(16):23241-23248
In this work, a two-step solid-state reaction method is used to prepare the 0.55 Pb(Ni1/3Nb2/3)O3-0.135PbZrO3-0.315PbTiO3/xSnO2 (PNN-PZT/xSnO2) ceramics. The influences of SnO2 on the crystalline structure, electromechanical properties, and temperature stability of PNN-PZT ceramics were studied in detail. The results demonstrate that the Sn4+ ions are successfully introduced into the PNN-PZT crystalline lattice and substitute B-site Ni2+ and Zr4+. The x = 0.0025 ceramic with the coexistence of rhombohedral, tetragonal, and pseudocubic phases exhibits the optimized comprehensive properties: the quasi-static piezoelectric constant d33, large-signal d33*, electromechanical coupling coefficients kp and kt, free dielectric constant εr, and mechanical quality factor Qm are 1123 pC/N, 1250 p.m./V, 0.63, 0.54, 9529, and 57, respectively. Meanwhile, the Curie temperature for this composition is 103 °C, almost maintaining the same level as the PNN-PZT matrix. After annealing at 75 °C, the retained d33 of x = 0.0025 ceramic is as high as 975 pC/N, superior to the PNN-PZT matrix (retained d33 ≈ 873 pC/N). Our results provide a promising piezoelectric material for board bandwidth, high sensitivity, and miniaturized medical ultrasonic transducers applications.  相似文献   

4.
《Ceramics International》2017,43(13):9906-9911
Silicon nitride-based composite ceramics with different contents of magnesium titanate have been fabricated via gas pressure sintering method. The phase compositions, microstructure, mechanical performances and dielectric properties of the composite ceramics were investigated. The density of the Si3N4-based composite ceramics firstly increased with additive of magnesium titanate powder up to 5 wt% and then gently decreased, and the mechanical properties firstly increased and then declined. Besides, the dielectric constant and dielectric loss increased with the increase of magnesium titanate contents. For the Si3N4-based composite ceramics with 5 wt% magnesium titanate powders, the flexural strength, elastic modulus, dielectric constant and dielectric loss reached 451 MPa, 274 GPa, 7.65, 0.0056, respectively. These results suggested that the magnesium titanate was beneficial for the improvement of mechanical performances and dielectric constant of Si3N4-based composite ceramics.  相似文献   

5.
《Ceramics International》2016,42(15):17128-17136
Nanoparticles of basic composition Sn0.94Zn0.05Co0.01O2, Sn0.92Zn0.05Co0.03O2 and Sn0.90Zn0.05Co0.05O2 were synthesized by chemical precipitation method. The incorporation of Co and Zn in SnO2 lattice introduced significant changes in the physical properties of all the three nanocrystals. The average particle size estimated from TEM data decreased from 15.71 to 6.41  nm with enhancement in concentration of oxygen vacancies as Co content is increased from 1 to 5 wt%. Increasing Co content enhanced the Sn:O atomic ratio as a result concentration of oxygen vacancies increased. The dielectric study revealed strong doping dependence. The dielectric parameters (ε′, tanδ and σac) increased with increasing Co content and attained maximum values for 5% (Zn, Co) co-doped SnO2 nanoparticles. The dielectric loss (ε′′) exhibited dispersion behavior and the Debye’s relaxation peaks observed in dielectric loss factor (tanδ), whose intensities increased with increasing Co content. The variation of dielectric properties and ac conductivity revealed that the dispersion is due to Maxwell-Wagner interfacial polarization and hopping of charge carriers between Sn+2/Sn+3 and Co+2/Co+3. The large dielectric constant of all samples made them interesting materials for device application. Magnetization measurements (M (H) loops) revealed enhancement in saturation magnetization with doping which is due to the formation of large amount of induced defects and oxygen vacancies in the samples. The present study clearly reveals doping dependent properties and the oxygen vacancies induced ferromagnetism in Zn, Co co-doped SnO2 nanoparticles having applications in ultra-high dielectric materials, high frequency devices and spintronics.  相似文献   

6.
Co2P2O7 ceramics were prepared through the traditional solid-state sintering technique. The phase composition, grain size distribution, and densification were researched via X-ray diffraction and scanning electron microscope. The influence of pores on permittivity was described by various models. The dielectric loss was found highly dependent on porosity. Moreover, the low εr (<10) values of Co2P2O7 ceramics were explained by the covalent feature of P–O bonds. Raman spectroscopy was used for exploring the relationship between polar phonon modes and dielectric properties in terms of intrinsic factors. The optimum dielectric properties (εr = 6.76, Qf = 36,400 GHz and τf = ?23.9 ppm/°C) were obtained at 1160 °C for 4 h.  相似文献   

7.
ZnO-based varistor ceramics doped with Nd2O3 and Y2O3 have been prepared by the conventional ceramics method. The phase composition, microstructure and electrical properties of the ceramics have been investigated by XRD, SEM and a VI source/measure unit. The XRD and EDS analyses show the presence of ZnO, Bi2O3, Zn7Sb2O12, Y2O3, Nd-rich phase and Y-containing Bi-rich phase. The electrical properties analyzed show that the nonlinear coefficient of the varistor ceramics is in the range of 4.4–70.2, the threshold voltage is in the range of 247.1–1288.8 V/mm, and the leakage current is in the range of 1.51–214.6 μA/cm2. The 0.25 mol% Nd2O3 added varistor ceramics with 0.10 mol%Y2O3 sintered at 1050 °C exhibits excellent electrical properties with the high threshold voltage of 556.4 V/mm, the nonlinear coefficient of 61 and the leakage current of 1.55 μA/cm2. The results illustrate that doping Nd2O3 and Y2O3 in ZnO-based varistor ceramics may be a very promising route for the production of the higher threshold voltage and the nonlinear coefficient of ZnO-based varistor ceramics.  相似文献   

8.
9.
Di-phase composite ceramics based on BaTiO3 with 5?vol% of Ag filler have been prepared by sintering the mixture of powders at temperatures above the silver melting point (1000?°C–1300?°C/2?h). As predicted by finite element calculations, the addition of metallic particles should produce a field concentration in some regions of the BaTiO3 matrix and therefore, an enhanced dielectric response with respect to pure BaTiO3. The role of oxygen vacancies on the dielectric relaxation mechanisms of Ag-BaTiO3 composites has been investigated. The sintering temperature of 1200?°C provided optimized ceramics with excellent dielectric properties, i.e. with low losses (tanδ?<?3%) and room temperature permittivity measured at 50?kHz exceeding 6500 (and above 13,000 at the Curie temperature), as result of a good densification (94% relative density) and a synergy effect of the metallic particles inclusions and ceramic grain size in the range of ≈1?μm, where BaTiO3 has a well-known maximum of its permittivity.  相似文献   

10.
A novel low temperature firing high Q microwave dielectric ceramic Ca5Co4(VO4)6 was prepared by the conventional solid-state reaction method. The phase purity, microstructure, and microwave dielectric properties were investigated. The Ca5Co4(VO4)6 ceramic sintered at 875 °C exhibited excellent microwave dielectric properties: Qxf = 95,200 GHz (at 10.6 GHz), τf = −63 ppm/°C, ɛr = 10.1, and its ɛr corrected for porosity was calculated as 11.1.  相似文献   

11.
In this study, Ba(Zn1/3Ta2/3)O3-based complex perovskite compounds, including Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Ta1/3Nb1/3)O3, Ba(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3, and Ba1/2Sr1/2(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3, were prepared and characterized. There was no second phase formation shown in the XRD patterns. Though it has been suggested that substitutions of multiple ions over A-site or B-site of the Ba(Zn1/3Ta2/3)O3 ceramics may not be beneficial to their microwave dielectric properties, the Ba(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 and Ba1/2Sr1/2(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 ceramics in this study were found to perform in a fairly acceptable manner. The Ba(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 ceramic (sintered at 1575 °C for 6 h) and the Ba1/2Sr1/2(Zn1/6Co1/6Ta2/9Nb2/9Sb2/9)O3 ceramic (sintered at 1550 °C for 6 h) reported the following characteristics after annealing at 1400 °C for 10 h: 24.9 and 27.0 for dielectric constants (?r), 83,000 and 32,100 GHz for quality factors (Q × f) values and −12.8 and −22.6 ppm/°C for temperature coefficients of resonance frequency (τf).  相似文献   

12.
Dy/Mn doped BaTiO3 with different Dy2O3 contents, ranging from 0.1 to 5.0 at% Dy, were investigated regarding their microstructural and dielectric characteristics. The content of 0.05 at% Mn was constant in all the investigated samples. The samples were prepared by the conventional solid state reaction and sintered at 1290°, and 1350 °C in air atmosphere for 2 h. The low doped samples (0.1 and 0.5 at% Dy) exhibit mainly fairly uniform and homogeneous microstructure with average grain sizes ranged from 0.3 μm to 3.0 μm. At 1350 °C, the appearance of secondary, abnormal, grains in the fine grain matrix and core–shell structure were observed in highly doped Dy/BaTiO3. Dielectric measurements were carried out as a function of temperature up to 180 °C. The low doped samples sintered at 1350 °C, display the high value of dielectric permittivity at room temperature, 5600 for 0.1Dy/BaTiO3. A nearly flat permittivity–temperature response was obtained in specimens with 2.0 and 5.0 at% additive content. Using a Curie–Weiss and modified Curie–Weiss low, the Curie constant (C), Curie like constant (C′), Curie temperature (TC) and a critical exponent (γ) were calculated. The obtained values of γ pointed out the diffuse phase transformation in highly doped BaTiO3 samples.  相似文献   

13.
《Ceramics International》2016,42(16):18087-18093
Ba3CaNb2O9 is a 1:2 ordered perovskite which presents a trigonal cell within the D3d3 space group. Dense ceramics of Ba3CaNb2O9 were prepared by the solid-state reaction route, and their microwave dielectric features were evaluated as a function of the sintering time. From Raman spectroscopy, by using group-theory calculations, we were able to recognize the coexistence of the 1:1 and 1:2 ordering types in all samples, in which increasing the sintering time tends to reduce the 1:1 domain, leading to an enhancement of the unloaded quality factor. We concluded that this domain acts as a lattice vibration damping, consequently raising the dielectric loss at microwave frequencies. The best microwave dielectric parameters were determined in ceramics sintered at 1500 °C for 32h: ε′ ~ 43; Qu×fr = 15,752 GHz; τf ~ 278 ppm °C−1.  相似文献   

14.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped with different Sc2O3 content sintered at 1100 °C were investigated. The results showed that the nonlinear coefficient of the varistor ceramics with Sc2O3 were in the range of 18-54, the threshold voltage in the range of 250-332 V/mm, the leakage current in the range of 0.1-23.0 μA, with addition of 0-1.00 mol% Sc2O3. The ZnO-Bi2O3-based varistor ceramics doped with Sc2O3 content of 0.12 mol% exhibited the highest nonlinearity, in which the nonlinear coefficient is 54, the threshold voltage and the leakage current is 278 V/mm and 2.9 μA, respectively. The results confirmed that doping with Sc2O3 was a very promising route for the production of the higher nonlinear coefficient of ZnO-Bi2O3-based varistor ceramics, and determining the proper amounts of addition of Sc2O3 was of great importance.  相似文献   

15.
《Ceramics International》2023,49(1):126-133
In this work, the 0.9Al2O3-0.1TiO2 ceramic sample with good microwave dielectric properties and complex structures can be well fabricated by digital light processing (DLP). A relationship between dispersant content and rheological behavior of 0.9Al2O3-0.1TiO2 slurry was explored. When dispersant content was 3.0 wt%, 0.9Al2O3-0.1TiO2 slurry with high solid loading (50 vol%) and low viscosity (2.9 Pa s) could be obtained. 0.9Al2O3-0.1TiO2 ceramic parts with high accuracy were fabricated successfully by adding 3.0 wt% photoinitiator under 600 mJ/cm2 exposure energy. With the increase of sintering temperature from 1400 °C to 1600 °C, relative density, dielectric constant (εr), and quality factor (Q × f) of 0.9Al2O3-0.1TiO2 ceramic sample increased first and then decreased, and all reached the maximum value at 1550 °C due to the uniformity and densification of microstructures. The temperature coefficient of resonant frequency (τf) value showed an almost monotonous increase, changing from negative to positive, and near-zero τf value at 1550 °C. In addition, 0.9Al2O3-0.1TiO2 ceramic samples sintered at 1550 °C fabricated by DLP method presented much better microwave dielectric properties: εr = 11.30 ± 0.02, Q × f = 35,345 ± 143 GHz (@~12 GHz), τf = 2.16 ± 0.21 ppm/°C than that of by dry pressing method: εr = 11.16 ± 0.11, Q × f = 30,195 ± 257 GHz (@~12 GHz), τf = 4.45 ± 0.13 ppm/°C, especially the Q × f value achieved a 17% increase. Accordingly, DLP technique, which has advantages of producing relatively high properties and complex geometry of microwave dielectric ceramics as well as without extra high-cost mold, greatly satisfies application requirements.  相似文献   

16.
《Ceramics International》2023,49(12):20398-20405
A dielectric high-entropy ceramic with a composition of Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3 was designed through B-site doping, and then prepared by solid phase reaction method combined with conventional sintering in air for 3 h at 1200 °C, 1250 °C and 1300 °C, respectively. All the high-entropy ceramics of Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3 possess a perovskite structure with uniform elemental distribution and their average grain size falls within the range of 3.19–5.5 μm. For the sample sintered at 1250 °C, the dielectric loss is less than 0.07 in the testing frequency of 1 kHz∼1 MHz in 30–350 °C, and the dielectric constant reaches a peak of 14356 at about 270 °C at 1 kHz. At room temperature, the remnant polarization Pr reaches 28.8 μC/cm2. The results demonstrate that the high-entropy ceramic of Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3 has great potentials in the dielectric and ferroelectric field.  相似文献   

17.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

18.
Li/Ta/Sb co-doped lead-free (K0.4425Na0.52Li0.0375)(Nb0.93−xTaxSb0.07)O3 (abbreviated KNLNSTx) piezoelectric ceramics, with Ta-doping ratio of x ranging from 0.0275 to 0.0675, were synthesized using the conventional solid-state reaction method at the sintering temperature of 1130 °C. The effects of Ta content on the microstructure, dielectric properties, and phase transition behavior of the prepared ceramics were systematically investigated. The X-ray diffraction results show that all KNLNSTx ceramics formed a secondary phase, which is assigned to the tetragonal tungsten-bronze type (TTB) structure phase, and showed a phase transition from an orthorhombic symmetry to a tetragonal symmetry across a composition region of 0.0375<x<0.0475. The grain shape and size that correspond to the phase structure transformations can be clearly observed in the scanning electron microscopy images. As x increased to 0.0475, the KNLNST0.0475 ceramics changed from orthorhombic to tetragonal structure and showed excellent piezoelectric properties of d33=313 pC/N, kp=47%, and εr=1825. By contrast, samples of x=0.0375 with orthorhombic symmetry exhibited poor piezoelectric properties, with d33=200 pC/N and εr=1015. These results indicate that phase structure is vital in the piezoelectric properties of KNN lead-free ceramics.  相似文献   

19.
20.
《Ceramics International》2022,48(15):21700-21708
A two-step method, combined with cold isostatic pressing, was used to prepare CeO2-doped ZrP2O7 ceramics, and their microstructure, mechanical properties, thermal conductivities, and dielectric properties were determined. It was found that CeO2 doping could increase the Zr–P and P–O bond lengths, which in turn decreased the thermal conductivity of the ZrP2O7 matrix. Doping with 12 wt% CeO2 simultaneously reduced the sintering temperature and improved the mechanical properties of the ZrP2O7 ceramics, while retaining its low thermal conductivity and good dielectric properties. The maximum cold modulus of rupture of a sample at 1250 °C was 75.91 MPa, which met most conditions for use at room temperature. A COMSOL model was used to predict the thermal conductivity, based on the microstructure, with a relatively high degree of accuracy. The thermal conductivity of the CeO2-doped samples was lower than 1.083 W/(m·K). The dielectric constant was in the range of 5.93–6.52 at 20–40 GHz, and the dielectric loss was less than 4 × 10?3. The ZrP2O7-doped ceramics have potential for application in millimetre wave technology, satellite communication, and vehicle radar fields, because they can meet the high thermal insulation requirements for these applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号