首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The effect of Hf additions on the thermal properties of ZrB2 ceramics was studied. Reactive hot pressing of ZrH2, B, and HfB2 powders was used to synthesize (Zr1?x,Hfx)B2 ceramics with Hf contents ranging from x = 0.0001 (0.01 at.%) to 0.0033 (0.33 at.%). Room‐temperature heat capacity values decreased from 495 J·(kg·K)?1 for a Hf content of 0.01 at.% to 423 J·(kg·K)?1 for a Hf content of 0.28 at.%. Thermal conductivity values decreased from 141 to 100 W·(m·K)?1 as Hf content increased from 0.01 to 0.33 at.%. This study revealed, for the first time, that small Hf contents decreased the thermal conductivity of ZrB2 ceramics. Furthermore, the results indicated that reported thermal properties of ZrB2 ceramics are affected by the presence of impurities and do not represent intrinsic behavior.  相似文献   

2.
Zirconium diboride ceramics were prepared with additions of up to 50 vol.% TiB2. The resulting (Zr,Ti)B2 ceramics formed complete solid solutions based on x-ray diffraction. The addition of TiB2 resulted in grain size decreasing from 22 μm for nominally pure ZrB2 to 7 μm for ZrB2–50 vol.% TiB2. The thermal conductivity at 25°C ranged from 93 W/m⋅K for nominally pure ZrB2 to 58 W/m⋅K for ZrB2–50 vol.% TiB2. Thermal conductivity was as high as 67 W/m⋅K for nominally pure ZrB2 at 2000°C, but dropped to 59 W/m K with the addition of 50 vol.% TiB2. Electrical resistivity measurements were used to calculate the electron contribution to thermal conductivity, which was 76 W/m⋅K for nominally pure ZrB2 decreasing to 57 W/m⋅K when 50 vol.% TiB2 was added. The phonon contribution to thermal conductivity did not change significantly for ≤10 vol.% TiB2. Additions of ≥25 vol.% TiB2 reduced the phonon contribution to nearly zero for all temperatures.  相似文献   

3.
The elevated temperature thermal properties of zirconium diboride ceramics containing boron carbide additions of up to 15 vol% were investigated using a combined experimental and modeling approach. The addition of B4C led to a decrease in the ZrB2 grain size from 22 µm for nominally pure ZrB2 to 5.4 µm for ZrB2 containing 15 vol% B4C. The measured room temperature thermal conductivity decreased from 93 W/m·K for nominally pure ZrB2 to 80 W/m·K for ZrB2 containing 15 vol% B4C. The thermal conductivity also decreased as temperature increased. For nominally pure ZrB2, the thermal conductivity was 67 W/m·K at 2000 °C compared to 55 W/m·K for ZrB2 containing 15 vol% B4C. A model was developed to describe the effects of grain size and the second phase additions on thermal conductivity from room temperature to 2000 °C. Differences between model predictions and measured values were less than 2 W/m·K at 25 °C for nominally pure ZrB2 and less than 6 W/m·K when 15 vol% B4C was added.  相似文献   

4.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

5.
《Ceramics International》2023,49(20):33255-33264
As the high-entropy design concept applied to the diboride ceramic system, high-entropy diboride ceramics with a wide range of composition control, is expected to become a new high-performance material for extreme high-temperature environments. Herein, the effects of four transition metal elements (Nb, Ti, Cr, W) on the phase stability and properties of (Hf, Zr, Ta)B2-based high-entropy diboride ceramics are systematically investigated via the first-principles calculations. All components were identified as thermodynamically, mechanically and dynamically stable from enthalpy of formation, elastic and phonon spectrum calculations. Among these, compared with the (Hf, Zr, Ta)B2 ceramics, the addition of Nb and Ti on the metal sublattice is beneficial to improve the mechanical properties of ceramics, including Young's modulus, hardness and fracture toughness, while the introduction of Cr and W weakens the strength of covalently and ionic bonds inside the material, reducing its mechanical properties. The predicted thermophysical properties show that the high-entropy diboride ceramics containing Nb and Ti have better high-temperature comprehensive performance, including higher Debye temperature, thermal conductivity and lower thermal expansion characteristics, which is conducive to the application in extreme high-temperature environments. This research will provide important guidance for the design and development of new high-performance high-entropy diboride ceramics.  相似文献   

6.
With the view to improve the densification behaviour and mechanical properties of ZrB2-SiC ceramics, three synthesis routes were investigated for the production of ZrB2, prior to the fabrication of ZrB2-20 vol. % SiC via spark plasma sintering (SPS). Two borothermal reduction routes, modified with a water-washing stage (BRW) and partial solid solution of Ti (BRS), were utilised, alongside a boro/carbothermal mechanism (BRCR) were utilised to synthesise ZrB2, as a precursor material for the production of ZrB2-SiC. It was determined that reduction in the primary ZrB2 particle size, alongside a diminished oxygen content, was capable of improving densification. ZrB2-SiC ceramics, with ZrB2 derived from BRW synthesis, exhibited a favorable combination of high relative density (98.6%), promoting a marked increase in Vickers hardness (21.4 ± 1.7 GPa) and improved thermal conductivity (68.7 W·m-1K-1).  相似文献   

7.
Medium- and high-entropy alloys or ceramics for tuning the physicochemical properties of materials by the combination of multiple principal elements have received much interest. Herein, a medium-entropy (Ti, Zr, Hf)2SC phase was synthesized attributing to the structural and chemical diversity of MAX phases. The crystal structure of (Ti, Zr, Hf)2SC was determined by the Rietveld refinement of XRD, SEM, and atom-resolved TEM along with EDS elemental analysis. Phase evolution of X-ray diffraction patterns and TG/DSC curves were employed to reveal the synthesis mechanism of (Ti, Zr, Hf)2SC from 2TiC–Zr–ZrC-2HfH2-3.2FeS reactant system. The Vicker's hardness and the electrical resistivity of (Ti, Zr, Hf)2SC were found higher than those of Ti2SC, but the thermal conductivity of (Ti, Zr, Hf)2SC was lower.  相似文献   

8.
Starting from ZrO2 and boron (molar ratio: 1:4), four ZrB2 powders were synthesized by borothermal reduction method, three of which were designed to introduce minor modifications by combining solid solution with Ti and/or water-washing. The sinterability, microstructures, mechanical properties and thermal conductivity were investigated. In comparison with the conventional borothermal reduction, the modified methods offered significant improvement in terms of densification of ZrB2 ceramics, particularly the mixture that included water-washing. Owing to the refined particle size and boron residues, ZrB2 ceramics from the modified borothermal reduction which included water-washing demonstrated nearly full densification, Vickers hardness of 14.0 GPa and thermal conductivity of 82.5 W/mK after spark plasma sintering at 2000 °C for 10 min. It was revealed that the properties of ZrB2 ceramics could be enhanced utilizing the proposed minor modification, starting from the same raw materials and adopting the same sintering conditions.  相似文献   

9.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

10.
Laminated ZrB2-SiCw ceramics with a thin Ti interlayer were synthesized via spark plasma sintering at varying temperatures. The effect of sintering temperature on the interlayer morphology, phase composition, and mechanical properties of laminated ZrB2-SiCw/Ti ceramics was assessed. With increasing sintering temperature from 1600 ℃ to 1800 ℃, element diffusion between the matrix and the interlayer gradually increased. The green-body ductile Ti gradually transformed into a multiphase mixture with increasing hardness at the interlayer, shortening the crack propagation path. The toughening mechanisms changed from delamination to deflection, leading to a decrease in fracture toughness from 15.30 ± 0.72 to 11.21 ± 0.45 MPa m1/2. Compared to monolithic ZrB2-SiCw ceramics, the introduction of multiple toughening mechanisms significantly improved the toughness of laminated ceramics with a small loss in strength. The electrical conductivity under parallel and perpendicular directions decreased with the decrease in residual Ti, with an important effect on electromagnetic effectiveness, reduced from 61.5 to 45.1 dB.  相似文献   

11.
Graphene derivative materials exhibit excellent mechanical and thermal properties, which have been extensively used to toughen ceramics and improve thermal shock resistance. To overcome the thermal agglomeration of graphene oxide (GO) during heating and drying process, ZrB2-SiC particles decorated GO hybrid foam with uniformly anchored ceramic particles was synthesized by electrostatic self-assembly and liquid nitrogen-assisted freeze-drying process. Densified rGO/ZrB2-SiC ceramics with varying microstructure, thermal physical and mechanical properties were obtained by adjusting the content of decorated ceramic particles. Although the flexural strength of rGO/ZrB2-SiC ceramics have an attenuation compared with that of ZrB2-SiC ceramic, the thermal conductivity, work of fracture and thermal shock resistance are greatly improved. rGO/ZrB2-SiC ceramics exhibit delayed fracture and increasing R-curve behavior during the crack propagation. The novel preparation technology allows for the well dispersion of rGO in ZrB2-SiC ceramics and can be easily extended to other ceramic or metal materials systems.  相似文献   

12.
The mechanical properties, thermal shock resistance, and ablation resistance of nano ZrB2 modified Si2BC3N ceramics were investigated. The results show that ZrB2 stimulated microstructure evolution obviously. Therefore, the maximum strength and fracture toughness reach 559.6 MPa and 6.77 MPa·m1/2, which are improved by 61.0% and 29.4%, respectively. Furthermore, the residual strengths of 10 wt% ZrB2 containing composites tested at 1000 ℃ retain 363.6 MPa, which is much higher than 97.7 MPa of pristine Si2BC3N ceramics. Besides, the ablation resistance of ZrB2 modified Si2BC3N ceramics at 3000 ℃ is enhanced remarkably and the linear and mass ablation rates of ZrB2-10 are only 0.009 mm/s and 1.91 mg/s, respectively. The ablation in the ultra-high temperature zone is totally dominated by the ZrB2 component, and the thermochemical erosion is determined by the oxidation resistance of ZrB2 in the thermal affected zone.  相似文献   

13.
Processing parameters to minimize the residual oxygen content of ZrB2 ceramics prepared by reactive hot‐pressing were selected using statistical analysis. Additions of carbon and excess boron were used to react with oxygen present in the starting ZrH2 and B powders as an impurity. A 32 full‐factorial experimental design was used to determine the carbon and excess boron contents that minimized residual oxygen content in the final ZrB2 ceramic while also minimizing formation of any impurity phases. Carbon additions were effective at reducing the oxygen content, but resulted in the formation of residual ZrC. Boron additions were also effective at removing oxygen, but to a lesser extent compared to carbon. In addition to being more effective at removing oxygen, carbon additions also improved the densification behavior, whereas boron additions inhibited densification. The stoichiometric reaction resulted in a ZrB2 ceramic with a relative density of 99%, but that contained 6.9 vol% of (Zr1?x,Mgx)O2?x as a residual phase following reactive hot‐pressing. The composition with a carbon addition to starting oxygen content having a molar ratio of 1, and a boron to zirconium molar ratio of 2.1, resulted in a 95% dense ceramic with only 0.1 vol% of residual (Zr1?x,Mgx)O2?x and trace amounts of ZrC.  相似文献   

14.
Novel high-entropy carbide ceramics (HEC) containing rare earth metals, namely (Ti, Zr, Hf, Ta, La, Y)C, (Ti, Zr, Hf, Ta, Nb, La, Y)C, and (Ti, Zr, Hf, Ta, Nb, Mo, W, La)C were prepared with single-phase structure by polymer precursor method. Controlled co-hydrolysis and polycondensation of equiatomic metal-containing monomers were conducted successively, followed by blending allyl-functional novolac resin as carbon source, and the polymer precursors were obtained as clear viscous liquid solutions. The single-phase formation possibility was theoretically analyzed from the aspects of size-effect parameter δ of the designed compositions. All as-obtained ceramics possessed single face-centered-cubic structure of metal carbides and high-compositional uniformity from nanoscale to microscale. The (Ti, Zr, Hf, Ta, Nb, Mo, W, La)C ceramic powder pyrolyzed at 1800°C exhibited low-oxygen impurity content of 1.2 wt%. Thus, multicomponent high-entropy carbide nanoceramics with over five metal elements containing even rare earth element were firstly synthesized and characterized.  相似文献   

15.
《Ceramics International》2023,49(13):21471-21478
In this study, novel (Ti,Hf)(C,N) ceramics with varying hafnium contents were fabricated via carbothermal reduction–nitridation and subsequent spark plasma sintering. The influence of Hf addition on the mechanical properties, wear properties, and corrosion resistance of the (Ti,Hf)(C,N) ceramics was systematically studied. The introduction of Hf promoted the sintering densification of the ceramics in the sintering process. The prepared (Ti,Hf)(C,N) ceramics exhibited excellent mechanical and wear properties owing to refinement and solution-strengthening mechanisms. The (Ti0.9,Hf0.1)(C0.5,N0.5) ceramic demonstrated higher Vickers hardness and fracture toughness, measuring 1997 HV5 and 4.28 MPa m1/2, respectively, compared to the pure Ti(C0.5,N0.5) ceramic which exhibited values of 1635 HV5 and 3.94 MPa MPa m1/2. The wear scar depth of the (Ti0.9,Hf0.1)(C0.5,N0.5) ceramic sample was 57.36% to that of the Ti(C0.5,N0.5) ceramic. Additionally, the addition of Hf improved the corrosion resistance of (Ti,Hf)(C,N) ceramics in a 0.5 M NaOH solution. The potential applications of (Ti,Hf)(C,N) ceramics include machining tools and wear-resistant parts.  相似文献   

16.
《Ceramics International》2022,48(20):30325-30331
High-performance thermal storage ceramics can enable utilization of solar thermal power generation plants. In this work, in situ synthesis was used to prepare mullite thermal storage ceramics. Calcined bauxite, talc, and kaolin were used as raw materials. The effects of additives (e.g., SiC, Si3N4, TiC, and ZrB2) on the density, mechanical durability, phase components, microstructure, and thermal performance of the mullite ceramics were studied. The results showed that the thermal expansion coefficient, thermal conductivity, and heat storage density of the mullite ceramics were affected by their phase components. SiC and Si3N4 did not decompose during the in situ syntheses, but TiC and ZrB2 decomposed. With the addition of 10 wt% SiC, the thermal conductivity improved to 2.72 W (m K)?1 (298 K). The heat storage density of this material was 688 kJ kg?1 (273–1073 K). Consequently, the in situ synthesized mullite thermal storage ceramic with added SiC could be a promising candidate material for a compound latent-sensible heat storage system.  相似文献   

17.
Re-entry space vehicle necessities sharp leading edges for better aerodynamic performance and, hence, require advanced thermal protection materials with improved safety for crew members. Material possessing high thermal conductivity and oxidation resistance are desirable at nose cap and wings leading edge of spacecraft. Consequently, the thermal shock resistance improves due to reduced thermal gradient and stresses. ZrB2 has drawn strong impetus for futuristic space vehicles as thermal protection materials under extreme thermal environments. This study reviews the effect of the incorporation of non-carbonaceous and carbon additives on the thermal conductivity of ZrB2 ceramics and based composites. Several factors such as the purity of starting powder, initial particle size, amount of sintering aids, processing route, porosity, the grain size of ZrB2 matrix, distribution of secondary phases in the matrix and sinter density of the final composite, controls the overall thermal conductivity of ZrB2 based composites.  相似文献   

18.
The design of bioinspired architectures is effective for increasing the toughness of ceramic materials. Particularly, a dual composite equiaxial architecture is ideal for fabricating weak interface-toughened ZrB2-SiC ceramics with isotropic performance. In this paper, ZrB2-SiC-Graphene@ZrB2-SiC dual composite ceramics were synthesized via an innovative processing technique of granulating-coating method. ZrB2-20 vol.% SiC containing 30 vol.% Graphene was selected as weak interface to realize multiscale toughening and improve the thermal shock resistance of ZrB2-SiC ceramic materials. The incorporation of ZrB2-SiC-Graphene weak interface into the ZrB2-SiC matrix improved the damage tolerance and critical thermal shock temperature difference. The design of equiaxial structures moderated the anisotropy of performance in different planes. The graphene sheets incorporated in the ZrB2-SiC-Graphene interface phase played a key role in multiscale toughening, including macroscopic toughening of crack deflection and microcracks, and microscopic toughening of graphene bridging and pull-out.  相似文献   

19.
We investigate the thermochemical stability of ZrB2–SiC based multiphase ceramics to hypersonic aerothermodynamic conditions in free piston shock tube with an objective to understand quantitatively the role of thermal shock and pressure. The developed ceramics sustained impulsive thermomechanical shock, under reflected shock pressure of 6.5 MPa and reflected shock temperature of 4160 K in dissociated oxygen, without structural failure. The conjugate heat transfer analysis predicts the surface temperature of ZrB2–SiC to reach a maximum of 693 and 865 K, for ZrB2–SiC–Ti. The transient shock-material response is characterized by surface oxidation of the investigated ceramics, when exposed to high enthalpy gaseous environment, as a consequence of the interaction with ultrafast-heated (106 K/s) gas for ~5 ms. Spectroscopic and structural characterization reveals that addition of Ti improves thermomechanical shock resistance, which is attributed to the assemblage of refractory phases. Taken together, ZrB2–SiC–Ti based multiphase ceramics exhibit favorable shock-material response under impulse loading.  相似文献   

20.
This study reviews densification behaviour, mechanical properties, thermal, and electrical conductivities of the ZrB2 ceramics and ZrB2-based composites. Hot-pressing is the most commonly used densification method for the ZrB2-based ceramics in historic studies. Recently, pressureless sintering, reactive hot pressing, and spark plasma sintering are being developed. Compositions with added carbides and disilicides displayed significant improvement of densification and made pressureless sintering possible at ≤2000 °C. Reactive hot-pressing allows in situ synthesizing and densifying of ZrB2-based composites. Spark plasma sintering displays a potential and attractive way to densify the ZrB2 ceramics and ZrB2-based composites without any additive. Young's modulus can be described by a mixture rule and it decreased with porosity. Fracture toughness displayed in the ZrB2-based composites is in the range of 2–6 MPa m1/2. Fine-grained ZrB2 ceramics had strengths of a few hundred MPa, which increased with the additions of SiC and MoSi2. The small second phase size and uniform distribution led to higher strengths. The addition of nano-sized SiC particles imparts a better oxidation resistance and improves the strength of post-oxidized ZrB2-based ceramics. In addition, the ZrB2-based composites showed high thermal and electrical conductivities, which decreased with temperature. These conductivities are sensitive to composition, microstructure and intergranular phase. The unique combinations of mechanical and physical properties make the ZrB2-based composites attractive candidates for high-temperature thermomechanical structural applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号