首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption-based Joule–Thomson coolers operate vibration-free, have a potentially long life time, and cause no electromagnetic interference. Therefore, they are appealing to a wide variety of applications, such as cooling of low-noise amplifiers, superconducting electronics, and optical detectors. The required cooling temperature depends on the device to be cooled and extends into the cryogenic range well below 80 K. This paper presents a generalized methodology for optimization in a sorption-based JT cooler. The analysis is based on the inherent properties of the fluids and the adsorbent. By using this method, the working fluid of a JT cooler driven by a single-stage sorption compressor is optimized for two ranges of cold-tip operating temperatures: 65–160 K and 16–38 K. The optimization method is also extended to two-stage compression and specifically nitrogen and carbon monoxide are considered.  相似文献   

2.
A sorption compressor cell basically consists of a container that is filled with an adsorbent. When such a cell is thermally cycled, a pressure difference is created by the subsequent adsorption and desorption of the gas. As a consequence, a single sorption compressor cell inherently provides an intermittent flow. A Joule-Thomson expansion stage requires a more or less continuous flow. The standard way to obtain a continuous flow out of a sorption compressor is to use three or more compressor cells that are operated out of phase. This paper presents an alternative compressor concept that uses only one compressor cell, two buffer volumes and two check valves. Such a compressor is easier to construct and to operate and has a higher reliability at the expense of a slight variation in the cooler’s cold-end temperature. The principle was demonstrated using a sorption compressor cell that is filled with Maxsorb [The Kansai Coke & Chemicals Co. Ltd., 1-1 Oh-Hama, Amagasaki, Japan 660] activated carbon, is equipped with a gas-gap heat switch, and uses xenon as the working fluid. A flow of 0.52 mg/s was achieved with a low pressure of 1.39 bar and a high pressure of 17.0 bar, giving a theoretical cooling power of 42 mW at 172 K. A sensitivity analysis on several control parameters has been performed experimentally.  相似文献   

3.
L.W. Yang  G. Thummes 《低温学》2005,45(2):155-159
High frequency (30-50 Hz) multi-stage pulse tube coolers that are capable of reaching temperatures close to 20 K or even lower are a subject of recent research and development activities. This paper reports on the design and test of a two-stage pulse tube cooler which is driven by a linear compressor with nominal input power of 200 W at an operating frequency of 30-45 Hz. A parallel configuration of the two pulse tubes is used with the warm ends of the pulse tubes located at ambient temperature. For both stages, the regenerator matrix consists of a stack of stainless steel screen. At an operating frequency of 35 Hz and with the first stage at 73 K a lowest stationary temperature of 19.6 K has been achieved at the second stage. The effects of input power, frequency, average pressure, and cold head orientation on the cooling performance are also reported. An even lower no-load temperature can be expected from the use of lead or other regenerator materials of high heat capacity in the second stage.  相似文献   

4.
In the framework of the ESA X-ray mission ATHENA, scheduled for launch in 2028, an ESA Core Technology Program (CTP) was started in 2016 to build a flight like cryostat demonstrator in parallel with the phase A studies of the ATHENA/X-IFU instrument [1], [2]. As part of this CTP, called the Detector Cooling System (DCS), design, manufacturing and test of a cryostat including existing space coolers will be done. In addition to the validation of thermal performance, a Focal Plan Assembly (FPA) demonstrator using Transition Edge Sensors (TES) detector technology will be also integrated and its performance characterized versus the environment provided by the cryostat. This is a unique opportunity to validate many crucial issues of the cryogenic part of such a sensitive instrument.A dedicated activity within this CTP-DCS is the demonstration of the 300 K–50 mK cooling chain in a Ground System Equipment (GSE) cryostat. The studies are focused on the operation of the space coolers, which is made possible by the use of a ground cooler for cooling cryogenic shields and mechanical supports. Thanks to the modularity of the cryostat, several cooling chains could be tested. In the base line configuration described here, the low temperature stage is the CEA hybrid sorption/ADR 50 mK cooler with thermal interfaces at 4 K and 2 K. 4 K cooling is accomplished by a 4 K Joule-Thomson (JT) cryocooler and its Stirling precooler provided by JAXA. Regarding the 2 K stage, at first a 2 K JT from JAXA will be used. Alternatively, a 2 K JT cooler from RAL could replace the JAXA 2 K JT. In both cases new prototype(s) of a 2 K JT will be implemented, precooled by the EM 15 K pule tube cooler from Air Liquide. This test program is also the opportunity to validate the operation of the cryochain with respect to various requirements, such as time constant and temperature stabilities. This would bring us valuable inputs to integrate the cryochain in DCS cryostat or for the X-IFU phase A studies. This cryochain demonstration is also a critical milestone for the SPICA mission [3]. The design of the cryostat and first thermal validations both before and after integration of the JAXA JT coolers are presented in this paper.  相似文献   

5.
N. Tzabar  G. Grossman 《低温学》2011,51(9):499-508
Joule–Thomson (JT) sorption cryocoolers rely on sorption compressors that provide a continuous flow with predetermined high and low pressures without any vibration emission. These cryocoolers may operate with different fluids, in accordance with the desired cold temperature. Nitrogen, methane, and ethane are prevalent candidate fluids for sorption cryocoolers, providing cold temperatures of about 80 K, 120 K, and 185 K, respectively. In order to develop a sorption compressor it is necessary to know the sorption characteristics of the fluid on the selected adsorbent. In this work we present experimental sorption measurements of the mentioned fluids on a commercial pelleted activated carbon. The Langmuir, Freundlich, and Sips models are fitted to the experimental results and further modified to incorporate the temperature dependence, in order to extend the prediction of sorption properties into wider ranges of temperature and pressure. It appears that each fluid has a different model that best fits its characteristics. Finally, the isosteric heat of adsorption is calculated for the three mentioned fluids as a function of the adsorption coverage and polynomial regressions are obtained for it.  相似文献   

6.
ESA's Darwin mission is an Infrared Space Interferometer that will search for terrestrial planets in orbit around other stars. It uses six free-flying telescopes that are stabilized with respect to each other to less than 10 nm by utilizing micro-Newton ion thrusters. As a consequence, hardly any vibration of the optical system with integrated cryocoolers can be tolerated. A sorption cooler is a favorite cooler option because it has no moving parts and it is, therefore, essentially vibration-free. An efficient two-stage helium/hydrogen sorption cooler is proposed with a cooling power of 10 mW at 5 K. It needs only 3 W of input power and applies two passive radiators at 50 and 70 K. Application of such low-temperature radiators is made possible by Darwin's far-away orbit L2 where earth-radiation is limited.In this paper, first Darwin's cooler requirements are discussed and different cryocooler options are compared. Next, sorption cooler operation is explained, after which six different sorption cooler configurations are described and compared.  相似文献   

7.
Infrared instruments (IR) for deep space imaging missions, such as the James Webb Space Telescope (JWST) and Planck, require cryogenic cooling for proper operation of their focal plane arrays (FPA) in far infrared and sub-millimeter wavelength ranges. The FPA is sometimes located meters away from the spacecraft. To meet such remote cooling requirement, a Joule-Thomson (J-T) loop becomes a convenient choice for either direct cooling for the FPA or for serving as a heat sink for a cascade cooling system. The refrigerant lines of the JT loop inevitably suffer parasitic heat leak primarily due to IR backload as they traverse from the spacecraft to the FPA. An actively cooled JT loop using a mechanical pre-cooler located at the spacecraft will experience the highest parasitic heat leak since the lines are cold through the entire length whereas a passively cooled JT loop can utilize a number of radiators to cool the lines down gradually in stages and hence reduce the heat leak. In addition to savings in power and mass, a passive cooler offers consistent and predictable performance with practically no performance degradation in a thermally stable orbit, such as one around the Sun-Earth L2 point. Passive coolers are less popular in low temperature applications when their cooling capacity diminishes rapidly in proportion to T4 until the temperature reaches a point where either the parasitic heat leak becomes so significant or its size becomes so excessive that the passive cooling scheme becomes impractical. Despite the limited capacity, passive cooling may still prove to be a viable alternative to active cooling depending on the operating temperature and heat dissipation rate of the FPA. The current effort aims at evaluating the merit of using passive coolers as an alternative to using a mechanical cooler for pre-cooling of a JT loop for remote IR instrument cooling. A parametric study is conducted to explore the merits of passive cooling of a JT loop in a temperature range below 30 K. Correlations between cooling capacity, heat leak from supporting structure, and the operating temperature are investigated to provide design guidelines. Radiator staging options will also be presented and discussed.  相似文献   

8.
The provision of temperatures below 12 K is essential for sub-mm and FIR observations from satellite instruments. Historically this has been achieved with stored cryogens, however mechanical coolers could potentially provide higher reliability and flexibility. These cryocoolers typically incorporate a regenerative cold-finger, such as a pulse-tube, however this can be replaced by a recuperative Joule-Thompson stage to obtain the lowest temperatures required. The major change to the compressor is the requirement for steady flow. This paper describes the development of such a compressor using reed valves, based on space-qualified hardware. Long life potential was demonstrated by measuring the motion of the valves during operation. A model was also developed and validated to optimize performance.  相似文献   

9.
Development of mechanical cryocoolers for Astro-H/SXS   总被引:1,自引:0,他引:1  
The Soft X-ray Spectrometer (SXS) is a high-resolution spectrometer with an X-ray micro-calorimeter array onboard the Japanese X-ray astronomy satellite Astro-H, planned for launch in 2013. The micro-calorimeter is operated at cryogenic temperature of 50 mK provided by the Adiabatic Demagnetization Refrigerator (ADR) with a heat sink of 1.3 K liquid helium stored in the SXS Dewar. To extend the liquid helium lifetime to over 3 years in orbit, two types of mechanical cryocoolers are installed: 20 K-class double-staged Stirling (2ST) coolers and a 1 K-class Joule-Thomson (JT) cooler. Improvement of mechanical cryocoolers has been investigated and verified for higher reliability and cooling performance. The engineering model (EM) of upgraded mechanical cryocoolers was fabricated for a long lifetime test. The required cooling power of 200 mW at 20 K for the 2ST cooler and 10 mW at 1.7 K for the JT cooler are achieved by EM test.  相似文献   

10.
Recent development of “dry” dilution refrigerators has used mechanical cryocoolers and Joule-Thomson expansion stages to cool and liquefy the circulating 3He. While this approach has been highly successful, we propose three alternative designs that use independently-cooled condensers. In the first, the circulating helium is precooled by a mechanical cooler, and liquified by self-contained 4He sorption coolers. In the second, the helium is liquefied by a closed-cycle, continuous flow 4He refrigerator operating from a room temperature pump. Finally, the third scheme uses a separate 4He Joule-Thomson stage to cool the 3He condenser. The condensers in all these schemes are analogous to the “1-K pot” in a conventional dilution refrigerator. Such an approach would be advantageous in certain applications, such as instrumentation for astronomy and particle physics experiment, where a thermal stage at approximately 1 K would allow an alternative heat sink to the still for electronics and radiation shielding, or quantum computer research where a large number of coaxial cables must be heat sunk in the cryostat. Furthermore, the behaviour of such a refrigerator is simplified due to the separation of the condenser stage from the dilution circuit, removing the complex interaction between the 4-K, Joule-Thomson, still and mixing chamber stages found in current dry DR designs.  相似文献   

11.
研制1台新型液氦温区分离型二级脉管制冷机,该制冷机由2台独立的脉管制冷机组成,一级回热器冷端和二级回热器中部通过热桥相连,从根本上弥补了传统直接耦合型多级脉管制冷机级间干扰的不足.采用双压缩机双旋转阀驱动该二级脉管制冷机,第二级最低温度达到了2.5 K,在4.2 K下有508 mW制冷量,同时一级在37.5 K有15 W制冷量.第二级充气压力由1.7 MPa增大到1.85 MPa,制冷机在4.2 K下的制冷量可以达到590 mW.为了能简化结构、扩大应用,提出采用单压缩机单旋转阀驱动该分离型脉管制冷机,达到了相同的制冷性能.  相似文献   

12.
Thermodynamic (energy and exergy) analyses and optimization studies of two-stage transcritical N2O and CO2 cycles, incorporating compressor intercooling, are presented based on cycle simulation employing simultaneous optimization of intercooler pressure and gas cooler pressure. Further, performance comparisons with the basic single-stage cycles are also presented. The N2O cycle exhibits higher cooling COP, lower optimum gas cooler pressure and discharge temperature and higher second law efficiency as compared to an equivalent CO2 cycle. However, two-stage compression with intercooling yields lesser COP improvement for N2O compared to CO2. Based on the cycle simulations, correlations of optimum gas cooler pressure and inter-stage pressure in terms of gas cooler exit temperature and evaporator temperature are obtained. This is expected to be of help as a guideline in optimal design and operation of such systems.  相似文献   

13.
This report describes the results and operating status of ground lifetime testing and achievements on orbit of coolers for space use. Ground lifetime tests of coolers of three types were conducted to demonstrate their long life and reliability. Three single-stage Stirling coolers were tested for 89,016, 71,871 and 68,273 h from 1998, a two-stage Stirling cooler was tested for 72,906 h, and a 4-K class cooler with a two-stage Stirling cooler and a Joule–Thomson cooler was tested for over 2.5 years. After lifetime tests were completed, a few coolers were investigated to determine the cause of the cooling performance degradation. Additionally, the filled gas of the coolers was analyzed. These coolers have shown good results on orbit. Three single-stage Stirling coolers were carried on the X-ray astronomical satellite “SUZAKU” (launched in July 2005), Japanese lunar polar orbiter “KAGUYA” (launched in September 2007), and the Japanese Venus Climate Orbiter “AKATSUKI” (launched in June 2010). Two units of a two-stage Stirling cooler were carried on the infrared astronomical satellite “AKARI” launched in February 2006. A 4-K class cooler was carried on the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) aboard the Japanese Experiment Module (JEM) of the International Space Station (ISS). SMILES was launched in September 2009.  相似文献   

14.
The Japanese infrared space telescope SPICA mission, following the successful Akari mission, has been studied at the concept design phase in international collaboration with ESA under the framework of the ESA Cosmic Vision 2015-2025. The SPICA spacecraft is to be launched in 2018 and transferred into a halo orbit around the Sun-Earth L2 to obtain a stable thermal environment where the IR space telescope’s large mirror of 3 m-class in diameter can be cooled to <5.5 K with mechanical coolers and effective radiative cooling with no use of stored cryogen. The SPICA’s large and cold telescope is expected to provide unprecedented scientific observation optimized for mid-IR and far-IR astronomy with ultra-high sensitivity and excellent spatial resolution during a nominal mission life of 3 years (goal 5 years). Thermal and structural analyses show that the obtained design of the SPICA cryogenic system satisfies the mission requirement. Mechanical coolers for the 4.5 K stage and the 1.7 K stage, which have been continuously developed, have a sufficient cooling capacity with low power consumption to lift the heat loads from instruments and parasitic heat loads. As a result, it is concluded that the concept design of the SPICA cryogenic system is confirmed for the initial cooling mode after launch and the nominal operation mode.  相似文献   

15.
In this paper, we introduce a new kind of two-stage pulse tube refrigerators. The chosen entire coaxial configuration combines the advantages of the coaxial design with the two-stage pulse tube concept. Lead coated screens build the inhomogeneous regenerator matrix of the second stage. Without any rare earth compounds the refrigerator reaches a no load temperature of 6.6 K at the second stage cold tip. The active type of phase shifting is generated by a rotary valve combined with two needle valves at the hot end of each pulse tube (compressor Leybold RW 6000, 6 kW input power). This paper focuses on the design parameters and first performance measurements.  相似文献   

16.
A cryocooler survey has been performed on data of 235 cryocoolers, with cooling powers below some tens of watts and operating between 4 and 120 K. The state-of-the-art is discussed and trends are investigated on cooling performance, mass and size, cost, lifetime and reliability. The data were compared with earlier surveys to explore historical trends. Improvements in cooling performance were mainly in 80 K cryocoolers, an increase in efficiency by about a factor of 5. Coolers did not reduce in size significantly. Main reduction was in 80 K coolers because of the higher efficiency. In the survey, cost is related to input power, cooling power and operating temperature. Cost development is considered and related to learning curves. Since the mid-90s, the lifetime of Stirling-type cryocoolers has increased by one order of magnitude from typically 0.5 to 5 years or more. The confusion that exists on the term “reliability” is discussed.  相似文献   

17.
Vibration-free miniature Joule–Thomson (JT) coolers are of interest for cooling a wide variety of devices, including low-noise amplifiers, semiconducting and superconducting electronics, and small optical detectors used in space applications. For cooling such devices, coolers are needed which have operating temperatures within a wide temperature range of 2–250 K. In this paper, the optimization of the working fluid in JT cold stages is described that operate at different temperatures within that range. For each temperature, the most suitable working fluid is selected on the basis of the coefficient of performance of the cold stage, which is defined as the ratio of the gross cooling power to the change in Gibbs free energy of the fluid during compression. In addition, a figure of merit of the heat exchange in the counter-flow heat exchanger is evaluated that depends only on the properties of the working fluid.  相似文献   

18.
Micro Joule–Thomson (JT) coolers made from glass wafers have been investigated for many years at the University of Twente. After successful realization of a single-stage JT microcooler with a cooling capacity of about 10 mW at 100 K, a two-stage microcooler is being researched to attain a lower temperature of about 30 K. By maximizing the coefficient of performance (COP) of the two-stage microcooler, nitrogen is selected as the optimum working fluid for the first stage and hydrogen as that for the second stage. A dynamic finite-element model is developed for analyzing the cooler performance and to calculate the smallest cooler geometry. The optimized overall cooler dimensions are 20.4 × 85.8 × 0.72 mm for a net cooling power of 50 mW at 97 K at the first stage and 20 mW at 28 K at the second stage. The cool-down time to 28 K is calculated to be about 1.7 h with mass-flow rates of 14.0 mg/s for nitrogen and 0.94 mg/s for hydrogen at steady state.  相似文献   

19.
L.M. Qiu  Y.L. He  Z.H. Gan  G.B. Chen 《低温学》2005,45(9):641-643
A single-stage G-M type pulse tube cooler (PTC) was designed and tested to explore the lowest attainable refrigeration temperature and to further improve the cooling performance in the temperature range of 15-40 K. The magnetic material Er3Ni was used as part of the regenerative material besides the phosphor-bronze and the lead so as to improve the efficiency of the regenerator. With an input power of 6 kW, a lowest no-load refrigeration temperature of 12.6 K was obtained, which is a new record for the single-stage PTC. The cooling capacity at 15-40 K was also significantly improved, which may extend the application of the single-stage PTC for the cooling of superconductors and cryopumps.  相似文献   

20.
中冷器的主要功能是排除气体被压缩过程产生的热量,是提高压缩机效率的重要设备。从传热阻力看,壳程空气的热阻占总热组的80%以上,壳程气体阻力大,风机或压缩机能耗较大。要提高中冷器的传热性能,关键是强化壳程空气的对流传热和减小壳程空气的流动阻力。着重介绍气冷侧强化传热技术产生的节能效益,建立扭曲管中冷器和传统弓形折流板中冷器并行对比实验测试平台,通过改变壳程空气质量流量、管内循环水温度和流量等参数以测试其热力性能和压降损失,实验结果表明,扭曲管中冷器的壳程气体压降小,综合传热性能明显优于传统弓形折流板中冷器35%-87%,低Re数条件下尤为显著。对压缩机冷却系统的优化设计有一定的指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号