首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
用共沉淀法合成Fe0.97Mn0.03PO4前驱体,再通过碳热还原法合成多元掺杂的Li0.97 δTi0.03Fe0.97Mn0.03PO4/C复合材料,利用X射线衍射(XRD),扫描电镜(SEM)、傅立叶红外光谱(FTIR)等测试手段对样品的晶体结构、表观形貌、谱学性质等进行了分析研究,对其倍率放电性能及循环性能等进行了测试,并与不掺杂的LiFePO4/C复合材料进行了比较.研究表明,掺杂过程中,掺杂的Mn4 、Ti4 离子能与LiFePO4形成单一的橄榄石型晶体结构,晶型完整,产物形貌规则,平均粒径在1um左右.用Li0.97 δTi0.03Fe0.97Mn0.03PO4/C为正极材料制作的电池分别以0.2,1,5、10C倍率放电,首次放电容量为134.0、133.4,130.1和127.2mAh·g-1,并表现出良好的循环性能.  相似文献   

2.
通过溶液法制备钌/石墨烯(Ru/G)复合材料,用作锂-空气电池的正极材料。通过充放电测试、循环伏安(CV)和电化学阻抗(EIS)研究了锂-空气电池的电化学性能。结果表明:Ru/G复合材料作为锂-空气电池的正极材料,明显提高了氧化还原反应的催化活性,改善了电化学反应性能。在电流密度为500mA·g-1时,首次充放电比容量分别为13136mAh·g-1和13578mAh·g-1,充放电的过电位降低了约0.35V。当固定充放电比容量为1000mAh·g-1,采用恒流充放电模式,可稳定循环30次。  相似文献   

3.
采用水热法、化学沉积法、有机溶剂还原法,逐步合成了择优生长、石墨烯基复合材料包覆改性的锂离子电池四元复合正极材料LiFePO_4/CuO/Ag/RGO。分别采用XRD、TEM和循环充放电等手段对材料进行性能表征。结果表明,包覆后的LiFePO_4呈橄榄石型结构,包覆材料未对LiFePO_4结构和晶型产生影响。所制备的材料呈现择优生长的棒状结构,石墨烯基复合材料将LiFePO_4包覆,构成稳定的导电网络。电化学性能测试表明,改性后的复合材料在0.2C倍率下首次充放电比容量最高达到166mA·h/g。即使在50C高倍率下首次放电比容量依然达到87.9mA·h/g,表现出优良的的倍率和循环稳定性。  相似文献   

4.
两步掺杂合成法制备LiFePO4-C复合材料及其性能   总被引:1,自引:0,他引:1  
通过两步掺杂碳采用高温固相反应法合成了锂离子电池正极LiFePO4-C复合材料.利用SEM、XRD、TG/DTA等方法对该正极材料的晶体结构、表面形貌、粒径大小和热反应进行了分析研究.实验结果表明,LiFePO4-C具有单一的橄榄石结构,前驱体掺杂14%(质量分数)、预分解后掺杂6%(质量分数)葡萄糖合成的材料具有良好的充放电性能和循环稳定性能.在0.1C倍率下进行充放电测试,首次放电比容量可达158.5mA·h/g,具有良好的电化学性能.  相似文献   

5.
采用球磨-固相法,对Mn位进行Fe、Mg共掺杂,合成锂离子电池正极材料Li Mn0.7Fe0.3-xMgxPO4/C(x=0.00,0.02,0.04,0.06)。利用X射线衍射、扫描电镜对其结构和形貌进行表征;利用电池充放电测试系统和电化学工作站对其进行电化学性能测试。结果表明,Li Mn0.7Fe0.3-xMgxPO4/C呈现单相橄榄石结构;所得材料粒径分布均匀,在100 nm左右。经Fe、Mg共掺杂后材料综合电化学性能明显提高,其中Li Mn0.7Fe0.26Mg0.04PO4/C材料的性能最佳,在0.1,0.2,0.5,1和2 C倍率下的放电比容量分别为159.7,154.3,148.2,143.9和134.7 m Ah/g,1 C倍率下电池循环50次后的容量保持率为94.5%,倍率性能优异。  相似文献   

6.
Ti离子掺杂对LiFePO4材料性能的影响   总被引:2,自引:1,他引:1  
采用固相法合成了锂离子电池正极材料LiFePO4.为了提高LiFePO4的电化学性能,用Ti4 对LiFePO4进行掺杂.通过X射线衍射分析及电化学测试,研究了Ti掺杂对材料的结构和电化学性能的影响.以Li3PO4为锂源,(C4H9O)4Ti为掺杂源,合成了单一相Li1-xTixFePO4(x=0.005、0.01、0.02和0.03).实验研究表明,掺入少量的Ti4 ,可以减小晶胞体积,有效地提高了LiFePO4的循环性能和比容量.当(C4H9O)4Ti的掺入量为1 mol%时,在50mA/g的充放电电流下,首次放电比容量为123 mAh/g;经过60次循环后,容量基本上无衰减.  相似文献   

7.
Cr3+对LiFePO4/C材料结构和电化学性能的影响   总被引:1,自引:1,他引:0  
采用二步固相反应法合成了具有橄榄石结构的LiFe0.98Cr0.02PO4/C复合正极材料,并通过XRD、SEM、恒流充放电、循环伏安等分析测试手段对材料的物相结构及电化学性能进行表征。结果表明:LiFePO4材料引入Cr3+未改变其原有的晶体结构,但合成材料的颗粒尺寸明显减小,颗粒粒径约为200nm;获得的LiFe0.98Cr0.02-PO4/C复合材料具有良好的电化学性能,0.2C倍率下首次放电比容量为144.9mAh·g-1,50次循环后,容量保持率为99.6%,10C倍率放电比容量可达到116.3mAh·g-1。循环伏安性能测试表明Cr3+的掺杂提高了Li+在材料中脱嵌过程的可逆性。  相似文献   

8.
以碳酸锂、草酸亚铁、磷酸氢二铵、碳酸镁、碳酸锰为原料,葡萄糖为碳源,采用两步球磨高温固相法合成了锂离子电池正极LiMgxFe1-xPO4/C、LiMnxFe1-xPO4/C、LiFe1-x-yMnxMgyPO4/C复合材料。讨论了镁、锰金属离子对LiFePO4/C结构和性能的影响。利用X射线衍射、扫描电子显微镜、X射线能谱仪等方法研究了镁、锰金属离子掺杂对LiFePO4/C晶体结构和表面形貌的影响;利用电化学方法研究了镁、锰掺杂对LiFePO4/C充放电性能和循环稳定性的影响。结果表明,镁、锰金属离子掺杂合成的LiFePO4/C具有单一的橄榄石结构,颗粒尺寸均匀,具有良好的电化学性能和循环稳定性。掺杂的LiMg0.1Fe0.9PO4/C、LiMn0.1Fe0.9PO4/C、LiFe0.8Mn0.1Mg0.1PO4/C在0.1C下首次放电比容量分别为128.4mAh/g、110.8mAh/g、131.8mAh/g。  相似文献   

9.
通过化学氧化聚合方法制备了聚吡咯/磷酸亚铁锂(PPY/LiFePO4)复合材料,以此作为锂离子电池的正极活性物质,进行恒流充放电、循环伏安和交流阻抗测试。实验结果表明,PPY/LiFePO4复合材料具有较好的电化学性能,以0.2C放电时放电比容量可达150.8 mAh/g,20次循环之后容量为初始容量的92.5%,循环性能良好。  相似文献   

10.
采用石墨烯包覆掺杂Al 3+的LiMn2O4正极材料,用XRD、SEM分析其晶体结构及微观形貌,EIS、CV及充放电测试分析其电化学特性。实验结果表明,掺杂Al 3+的LiMn2O4为尖晶石结构,表面微观形貌接近菱形,包覆石墨烯后正极材料的阻抗值减少,可逆容量增加,电池大电流充放电性能增强。电池充放电测试数据表明:石墨烯的包覆提高了电池的充放电性能和循环特性,包覆材料在0.5C首次放电容量为116mAh/g;在0.5C倍率充放电50次循环后,其比容量为106mAh/g,容量保持率为92.17%。  相似文献   

11.
为实现锂氟化碳电池在更多领域的普遍应用,以工业化碳材料(活性炭、球形石墨、膨胀石墨和工业石墨烯)为碳源,制备了四种氟化碳正极材料。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FTIR)、X射线能谱(XPS)、氮气吸脱附以及电化学测试等表征手段对材料的微观形貌、晶体结构、化学结构和电化学性能进行了系统的研究。研究表明:氟化工业石墨烯具有完全的单氟化碳结构、高比表面积以及稳定的碳结构,在20 mA·g^(-1)的放电电流下可以实现高达945.4 mAh·g^(-1)的比容量;氟化活性炭具有较多的半共价C-F键,其起始放电电压最高,但是由于其结构稳定性较差,电压平台快速下降,导致整体比容量较低;氟化膨胀石墨和氟化球形石墨与氟化工业石墨烯结构类似,但是由于高氟化碳原子(CF_(2)和CF_(3))的存在,其放电比容量要低于氟化工业石墨烯。不过在高放电电流密度下,氟化膨胀石墨、氟化球形石墨和氟化工业石墨烯的能量密度十分接近,因此,基于氟化膨胀石墨和氟化球形石墨的成本优势,氟化膨胀石墨和氟化球形石墨更适合于高功率应用场景。  相似文献   

12.
Tricobalt tetroxide (Co3O4) is one of the promising anodes for lithium-ion batteries (LIBs) due to its high theoretical capacity. However, the poor electrical conductivity and the rapid capacity decay hamper its practical application. In this work, we design and fabricate a hierarchical Co3O4 nanorods/N-doped graphene (Co3O4/NG) material by a facile hydrothermal method. The nitrogen-doped graphene layers could buffer the volume change of Co3O4 nanorods during the delithium/lithium process, increase the electrical conductivity, and profit the diffusion of ions. As an anode, the Co3O4/NG material reveals high specific capacities of 1873.8 mA·h·g−1 after 120 cycles at 0.1 A·g−1 as well as 1299.5 mA·h·g−1 after 400 cycles at 0.5 A·g−1. Such superior electrochemical performances indicate that this work may provide an effective method for the design and synthesis of other metal oxide/N-doped graphene electrode materials.  相似文献   

13.
Currently, δ-MnO2 is one of the popularly studied cathode materials for aqueous zinc-ion batteries (ZIBs) but impeded by the sluggish kinetics of Zn2+ and the Mn cathode dissolution. Here, we report our discovery in the study of crystalline/amorphous MnO2 (disordered MnO2), prepared by a simple redox reaction in the order/disorder engineering. This disordered MnO2 cathode material, having open framework with more active sites and more stable structure, shows improved electrochemical performance in 2 mol·L−1 ZnSO4/0.1 mol·L−1 MnSO4 aqueous electrolyte. It delivers an ultrahigh discharge specific capacity of 636 mA·h·g−1 at 0.1 A·g−1 and remains a large discharge capacity of 216 mA·h·g−1 even at a high current density of 1 A·g−1 after 400 cycles. Hence disordered MnO2 could be a promising cathode material for aqueous ZIBs. The storage mechanism of the disordered MnO2 electrode is also systematically investigated by structural and morphological examinations of ex situ, ultimately proving that the mechanism is the same as that of the δ-MnO2 electrode. This work may pave the way for the possibility of using the order/disorder engineering to introduce novel properties in electrode materials for high-performance aqueous ZIBs.  相似文献   

14.
Spinel LiMn2O4 particles were successfully coated with CuO, MgO, ZnO, Al2O3 and CeO2 by a melting impregnation method. Except for the CeO2-coated sample, all the others exhibit better cycling stability than bare LiMn2O4 at room temperature and at 55°C. Among these samples, the ZnO-coated sample shows the best cycling stability. A capacity of 100 mA·h·g-1 still remained after 100 cycles at 55°C while the bare LiMn2O4 retains a capacity of only 80 mA·h·g-1 after the same number of cycles. The improvement in the cycling stability is attributed to the suppressed Mn dissolution caused by HF.  相似文献   

15.
采用原位溶剂热法,以氧化石墨烯(GO)与Co2+、Fe3+为原料制备疏松多孔的纳米CoFe2O4-还原氧化石墨烯(CoFe2O4-rGO)复合材料。采用XRD、Raman、SEM和HRTEM测试表征了纳米CoFe2O4-rGO复合材料的结构与形貌。测试结果表明,纳米CoFe2O4-rGO复合材料具有三维结构。自组装的多孔CoFe2O4纳米球粒径约为200 nm,在rGO上均匀分散,解决了CoFe2O4易团聚的问题。电化学测试结果表明,纳米CoFe2O4-rGO复合材料具有较高的比容量及优异的循环和倍率性能,在100 mA·g-1的电流密度下其比容量为1 262 mAh·g-1,50次循环后比容量仍能保持在642 mAh·g-1;并在2 000 mA·g-1的大电流密度下仍具有221 mAh·g-1的比容量。纳米CoFe2O4-rGO复合材料拥有更优异的电化学性能的原因在于CoFe2O4纳米球在rGO上均匀分布。三维结构增加了Li+储存的活性位点,有效缓解了电极的体积收缩/膨胀效应,提高了纳米CoFe2O4-rGO复合材料的导电性。   相似文献   

16.
由于钠离子半径比锂离子半径大70%,使得钠离子在石墨电极材料中脱嵌较困难,需要对石墨负极材料进行改性。以天然石墨为原料,采用Hummers法制备氧化石墨烯;在此基础上以钛酸丁酯为原料,采用溶胶-凝胶法制备了TiO_2前驱体/氧化石墨烯(TiO_2/GO)复合材料,通过热处理获得锐钛矿型TiO_2/还原氧化石墨烯(TiO_2/RGO)复合材料。电化学测试结果表明:TiO_2含量为15wt%的TiO_2/RGO复合材料在电流密度为20mA·g~(-1)下的首次放电比容量为74.08mAh·g~(-1),随着循环次数的增加,放电比容量逐渐增大,循环50次后达109.10mAh·g~(-1);充放电效率也呈现出逐渐增大的趋势,循环50次后达65.59%。而纯还原氧化石墨烯首次放电比容量为41.43mAh·g~(-1),循环50次后仅为20.47mAh·g~(-1)。  相似文献   

17.
以三聚氰胺为原料制备石墨相氮化碳(g-C3N4),加入盐酸进行水热处理得到酸活化的g-C3N4。研究了盐酸活化对g-C3N4结构、形貌及锂硫电池g-C3N4/S正极复合材料电化学性能的影响。实验结果表明:盐酸活化处理后,g-C3N4的层间距变化不显著。随着盐酸浓度增大,g-C3N4比表面积先增大后减小,当盐酸浓度为2.5wt%时,比表面积最大为86.1 m2·g-1,与未处理g-C3N4的13 m2·g-1相比提高了5~6倍;盐酸活化g-C3N4/S正极复合材料的比容量和循环性能也呈现先增大后减小的趋势,当盐酸浓度为2.5wt%时,比容量和循环性能最好,比容量为1 538 mAh·g-1,循环50次后容量保持率为77.8%,电化学性能与比表面积呈强相关性。   相似文献   

18.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

19.
以蔗糖为碳源, 以草酸为抗氧化剂, 采用溶剂热、球磨和固相烧结相结合的方法制备了LiMn0.6Fe0.4PO4/C正极材料, 并通过改变烧结温度得到了不同形貌结构的目标产物。以金属锂片为对电极, 组装成锂离子半电池, 探究其电化学性能。研究结果表明, 当烧结温度为650℃时, 该材料表现出优异的电化学性能, 在0.2C(1C=170 mA/g)的电流密度下, 起始容量为119.1 mAh/g, 循环80次之后, 容量上升到148.8 mAh/g, 并且该材料在大电流密度下也表现出优异的循环稳定性。  相似文献   

20.
采用直接热解法,以石墨烯为载体,2-甲基咪唑锌盐MAF-4(ZIF8)为模板,尿素提供碳和氮源,Fe为过渡金属源,合成氮掺杂石墨烯(N/GO)和Fe-ZIF8(N-GO@Fe/ZIF8)的复合催化剂,并组装成锌空气电池。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)及电化学工作站等分析手段对催化剂的形貌、结构及电化学性能进行表征。结果表明:合成的N-GO@Fe/ZIF8-900催化剂具有优异的氧还原/氧析出(ORR/OER)性能。氧还原半波电位达到0.885 V,优于Pt/C(0.856 V),氧析出时,在10 mA/cm^(2)的电流密度下对应电位为1.811 V,优于贵金属Pt/C(1.968 V),与IrO_(2)(1.75 V)性能相当。组装成锌空气电池后,比能量和功率密度分别达到886.2 mW·h·g^(-1)和73.44 mW/cm^(2),高于贵金属Pt/C的比能量(791.04 mW·h·g^(-1))和功率密度(57.12 mW/cm^(2))。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号