首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
用闭合场非平衡磁控溅射离子镀PVD涂层工艺在高速钢麻花钻上沉积了CrA lTiN梯度涂层。在干式切削条件下,对45#号钢和30CrMnS iA钢进行了钻削试验。通过涂层与未涂层钻头的寿命、磨损和切削力等试验比较,表明CrA lTiN梯度涂层钻头的切削性能远优于未涂层钻头,是一种极有发展前途的刀具涂层。  相似文献   

2.
以MoS2作为润滑剂,以石墨烯(GE)作为润滑添加剂,采用喷涂法在GCr15钢样片表面制备不同含量的GE/MoS2复合涂层。利用HSR-2M型高速往复式摩擦磨损试验机测试涂层在干摩擦及海水环境中的摩擦磨损性能,并分析了磨痕形貌及磨损机制。结果表明:添加适量石墨烯可明显改善MoS2涂层的摩擦磨损性能,且海水环境中涂层的摩擦因数、磨损率均低于干摩擦;在干摩擦和海水环境下,随着石墨烯含量的增加,GE/MoS2复合涂层的摩擦因数和磨损量均呈现先下降后上升的趋势,当石墨烯质量分数为0.8%时,摩擦磨损性能最优。干摩擦下MoS2涂层的磨损机制为疲劳磨损、黏着磨损和磨粒磨损,GE/MoS2复合涂层主要为磨粒磨损;而在海水环境下几种涂层均仅出现磨粒磨损。  相似文献   

3.
WS2 and WS2/Zr self-lubricating soft coatings were produced by medium-frequency magnetron sputtering, multi-arc ion plating and ion-beam-assisted deposition technique on the cemented carbide YT15 (WC + 15 % TiC + 6 % Co) substrates. Microstructural and fundamental properties of these coatings were examined. Sliding wear tests against 40Cr-hardened steel using a ball-on-disk tribometer method were carried out with these coated materials. The friction coefficient and wear rates were measured with various applied loads and sliding speeds. The wear surface features of the coatings were examined using SEM. The results showed that the WS-1 specimen (with WS2/Zr composite coating) has higher hardness and coating/substrate critical load compared with that of the WS-2 specimen (only with WS2 coating). The friction coefficient of WS-1 specimen increases with the increase in applied load and is quite insensitive to the sliding speed. The wear rate of the WS-1 specimen is almost constant under different applied loads and sliding speeds. The WS-1 specimen shows the smallest friction coefficient and wear rate among all the specimens tested under the same conditions. The WS-1 specimen exhibits improved friction behavior to that of the WS-2 specimen, and the antiwear lifetime of the WS2 coatings can be prolonged through adding Zr additives. The self-lubricating and wear mechanism of the WS2/Zr coating was also found from the sliding wear tests.  相似文献   

4.
Ni/carbon nanotube (Ni/CNTs) composite coatings were deposited on carbon steel plate by electroless deposition. The friction and wear properties were examined under dry sliding conditions using the ball-on-disk configuration. For reference, carbon steel plate was coated with Ni, Ni/SiC and Ni/graphite. The results show that the Ni/CNT coating has a microhardness value of 865 Hv, greater than for SiC reinforced composite deposits. The Ni/CNTs composite coating possesses not only a higher wear resistance but also a lower friction coefficient, resulting from their improved mechanical characteristics and the unique topological structure of the hollow nanotubes.  相似文献   

5.
G. Zhang  H. Liao  C. Mateus  C. Coddet 《Wear》2006,260(6):594-600
In this work, polyetheretherketone (PEEK) and PEEK/SiC-composite coatings were deposited on Al substrates using a printing technique to improve their surfaces performance. The objective of this work was to investigate coatings friction and wear behaviour. Especially, the effect of sliding velocity and applied load on coatings friction coefficient and wear rate was evaluated in range of 0.2-1.4 m/s and 1-9 N, respectively. Compared to Al substrate, the coated samples exhibit excellent friction coefficient and wear rate. For PEEK coating, under an applied load of 1 N, the increase in sliding velocity can result in decreasing of friction coefficient at a cost of wear resistance. Under a load of 9 N, however, PEEK coating exhibits the highest friction coefficient and wear rate at an intermediate velocity. These influences appear to be mainly ascribed to the influence of contact temperature of the two relative sliding parts. In most test conditions, the composite coating exhibits better wear resistance and a little higher friction coefficient. SiC reinforcement in composite coating plays a combined role. First of all, it might lead to energy dissipation for activation of fracture occurred on the interface of PEEK and the powders. Moreover, it can reduce coating ploughs and the adhesion between the two relative sliding parts.  相似文献   

6.
多组元复合是提高润滑薄膜苛刻工况下服役性能的有效方法。采用“射频磁控溅射+低温离子渗硫”复合工艺,在9Cr18轴承钢表面制备了Mo/MoS2-Pb-PbS复合固体润滑薄膜;利用自主研制的MSTS-1型多功能真空摩擦磨损试验机研究了8×10-5 Pa真空条件下法向载荷和滑动速率对Mo/MoS2-Pb-PbS复合薄膜摩擦学性能的影响。结果表明,在所设定的5种滑动速率下,Mo/MoS2-Pb-PbS薄膜的摩擦因数随滑动速率的增大而缓慢减小,磨损率经一定周次的跑合后逐渐趋于稳定;在不同的法向载荷下,随着载荷的增大,薄膜的摩擦因数呈近似抛物线增大,变化范围在0.03~0.24之间;薄膜表面的磨痕宽度同样随着载荷的增大而增大。  相似文献   

7.
The relationship between friction, wear, and transfer films of three metal carbide-reinforced amorphous carbon coatings (TiC/a:C, TiC/a:C–H, and WC/a:C–H), sometimes referred to as metal-doped diamond-like carbon coatings, has been investigated. Tribological tests were performed in an in situ tribometer with sapphire or steel hemispheres run against coated flats in dry or ambient air. The sliding contact interface was observed and recorded by optical microscopy during reciprocating sliding tests. The friction and wear behavior during run-in depended on the number of sliding cycles to form a stationary transfer film on the hemisphere. Stationary transfer films formed rapidly (within ten cycles) and the friction coefficient fell to 0.2 (ambient air) or 0.1 (dry air), except with sapphire against WC/a:C–H in dry air; with the latter, a stationary transfer film required nearly 100 cycles to form, during which the friction remained high and the wear rate was from 10 to 100 times higher than the other two coatings. For all coatings, three velocity accommodation modes (VAM) were observed from run-in to steady-state sliding and were correlated with the friction and wear behavior. The delayed adherence of the transfer film to sapphire from WC/a:C–H coatings in dry air is discussed in terms of equilibrium thermochemistry. Friction and wear behavior during run-in, therefore, depended on transfer film adherence to the hemisphere and the VAM between transfer films and the coating.  相似文献   

8.
The friction and wear properties of TiC–NiMo/steel rubbing pairs were investigated under dry condition. The sliding wear tests were carried out on the testing device at a velocity of 2.2 m/s and a load of 40 N. The volume wear increases with increase of the sliding distance as predicted by Archard’s equation. The wear coefficient of the cermets reduces with the increase of TiC and Mo content in the composite. The study has shown that the coefficient of friction was approximately the same for all the samples. The main wear mechanism in the TiC–NiMo cermets was micro-abrasion (polishing) and adhesive wear. At the initial stages of wear, adhesive wear characteristics featured by mild scratching and plastic smearing were observed on the worn surface, but at the later stages, contact fatigue failure of a relatively thick surface layer takes place.  相似文献   

9.
J. D. Bressan  R. Hesse  E. M. Silva  Jr.   《Wear》2001,250(1-12):561-568
The wear behavior of M2 high speed HSS steel and WC hard metal coated with TiAlN and TiCN were investigated and compared, using the pin on disk standard test with different loads. The coating PVD process has been done by two different suppliers, using an industrial equipment unit with optimized conditions. The coated layers were measured and characterized. The load, sliding distance and velocity of 0.5 m/s were kept constant during the abrasion test in order to control these variables. The counterface disks used were electric steel sheets from three different suppliers. The lost volume and temperature at the pin end have been measured during the wear test. Comparisons of tribological performance for the coated HSS and hard metal were done, using a plot of lost volume versus sliding distance for substrates and coatings. The pin worn surfaces were observed using a scanning electron microscope. A significant increase in the wear resistance of M2 steel and WC hard metal when coated with TiAlN and TiCN was observed. Quality of these coatings depended upon the supplier. Excessive porosity has diminished the TiAlN counting wear resistance from one supplier. However, in general the performance of TiAlN is superior to TiCN. The pin wear rate depended on the disk microstructure.  相似文献   

10.
Mo coated materials are used in automotive, aerospace, pulp and paper industries in order to protect machine parts against wear and corrosion. In this study, the wear amounts of Mo coatings deposited on ductile iron substrates using an atmospheric plasma-spray system were investigated for different loads and environment conditions. The Mo coatings were subjected to sliding wear against AISI 303 counter bodies under dry and acid environments. In a theoretical study, cross-sectional microhardness from the surface of the coatings, loads, environment and friction test durations were chosen as variable parameters in order to determine the amount of wear loss. The numerical results obtained via a neural network model were compared with the experimental results. Agreement between the experimental and numerical results is reasonably good.  相似文献   

11.
山东大学摘要:采用电弧离子镀法在硬质合金刀具表面制备了厚度为2.19~5.23μm的ZrN系列涂层,测定了涂层的显微硬度,并通过划痕试验和摩擦磨损试验考察了涂层与基体的结合强度及其摩擦磨损性能。在扫描电镜下观察磨损表面形貌,结果表明:ZrN系列涂层能够显著提高硬质合金刀具的表面硬度;涂层与基体的结合强度较高,划痕临界载荷高于60N;与此同时,电弧离子镀法ZrN系列涂层可以显著改善硬质合金刀具的耐磨性能。磨损机理主要是磨粒磨损和涂层的微剥落。  相似文献   

12.
研究了钢背衬碳纤维织物/环氧复合材料在环-环端面干摩擦状态下的摩擦学特性,考察了MoS2与石墨粉及其配比、衬层厚度、法向载荷对衬层干摩擦性能的影响,用扫描电子显微镜对衬层的磨损表面及对偶件45^#钢环表面进行了观察与分析。结果表明:厚度为1.5mm的试环衬层在摩擦过程中主要表现出粘结磨损特性,而含20%(质量分数)MoS2粉的0.6mm衬层表现出疲劳磨损与磨粒磨损特性。摩擦因数-时间特性曲线表明MoS2粉在降低衬层摩擦因数的同时能够抑制环氧树脂向对偶钢环表面的粘结;石墨对衬层的减摩效果优于MoS2粉,但摩擦温升引起树脂向偶件表面转移增多使得减摩效果大大降低;质量分数为33%的MoS2与石墨粉衬层表现出最佳的摩擦学性能,衬层摩擦因数具有随载荷先减小后上升的趋势。  相似文献   

13.
A thin layer of Ultra High Molecular Weight Polyethylene (UHMWPE) or UHMWPE + PFPE is coated onto cylindrical aluminium (Al) pin (4.6 mm diametre) surface with the aim of providing wear resistant coating on this soft and tribologically poor metal. The coefficient of friction and wear life of the coated samples are investigated on a pin-on-disk tribometre under different normal loads (394–622 g) and two sliding speeds (0.1 and 0.31 m/s) against uncoated Al disk as the counterface. Both coatings provide coefficient of friction values in the range of 0.02–0.2 as compared to 0.4–1.0 for uncoated Al. There is tremendous improvement in the wear life of the pin, with UHMWPE + PFPE film giving wear life approximately twice to thrice higher than that with only UHMWPE film. A thin polymer film is transferred to the disk surface during sliding providing very long-term wear life (continuous low coefficient of friction) despite visual removal of the film from the pin surface. The present films will have applications in gears and bearings as solid or boundary lubricants for automotive and aerospace component.  相似文献   

14.
Thin hard coatings on metal or ceramic surfaces offer a large spectrum of improvements of the friction and/or wear behaviour of tribosystems. The development of coatings and the tailoring of their properties require test methods providing information about their friction and wear behaviour. A new wear test standard (ASTM) is under development for the evaluation of friction and wear quantities for sliding motions using the reciprocating sliding mode. The applicability of this test method to coated specimens was checked by testing uncoated and coated steel specimens in contact with alumina balls, whereby lower loads were used than in the ASTM proposal for bulk materials. Additionally, the influence of the relative humidity of the surrounding air at room temperature on friction and wear results was examined.  相似文献   

15.
为改善MoS2基固体润滑涂层的摩擦磨损性能和耐蚀性能,制备了不同石墨烯(GE)添加量的MoS2复合涂层,利用HSR-2M摩擦磨损试验机测试了复合涂层的摩擦磨损性能,并分析了其磨损机理,通过极化曲线、交流阻抗谱(EIS)研究了涂层在3.5%NaCl溶液中的电化学腐蚀行为。试验结果表明,0.8-GE/MoS2复合涂层的摩擦磨损和耐腐蚀性能最优,其平均摩擦因数和磨损率分别为0.232和2.379×10-13 m3/(N·m),较未添加石墨烯的MoS2涂层分别降低了49.56%和43%,腐蚀速率(1.96×10-8 A/cm2)较纯MoS2涂层(5.54×10-6 A/cm2)降低了近2个数量级。石墨烯的二维片状结构具有良好的自润滑性能,在涂层中均匀分布时能有效阻隔腐蚀介质的渗透,因此,石墨烯的添加提高了MoS2基复合涂层的摩擦学性能和耐腐蚀性能,石墨烯的最优添加量为0.8%(质量分数)。  相似文献   

16.
Binshi Xu  Zixin Zhu  Wei Zhang 《Wear》2004,257(11):1089-1095
A comparative study was carried out to investigate the microstructure and tribological behavior of Fe-Al and Fe-Al/WC iron aluminide based coatings against Si3N4 under dry sliding at room temperature using a pin-on-disc tribotester. The coatings were prepared by high velocity arc spraying (HVAS) and cored wires. The effect of normal load on friction coefficient and wear rate of the coatings was studied. The microstructure and the worn surfaces of the coatings were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscope (EDS). The results showed that, the main phases in both coatings were iron aluminide (Fe3Al and FeAl) and α. WC/W2C particles were embedded in the matrix of the composite coating. With adding WC hard particles, the Fe-Al/WC composite coating exhibited higher wear-resistance than Fe-Al coating. But the friction coefficient of both coatings showed little difference. As the load increased, the friction coefficient decreases slightly due to a rise of friction contact temperature and larger areas of oxide film formation on the worn surface, which act as a solid lubricant. Increasing load causes the maximum shear stress occurring at the deeper position below the surface, thereby aggravating the wear. The coating surface is subjected to alternately tensile stress and compression stress during sliding, and the predominant wear mechanism of the coatings appears to be delamination.  相似文献   

17.
Industrial lubricants are invariably used with additives (with high sulfur and phosphorous contents) for tribological performance enhancement. However, these additives are environmentally very harmful. Hence, there is an urgent need to find alternate solutions for enhancing the tribological performance of lubricants and components without the use of harmful additives. The objective of this work is to investigate the feasibility of using polymer composite coatings in enhancing the tribological properties of steel surfaces in dry and base oil lubricated conditions. Pure epoxy and its composite (with 10?wt-% of graphene or graphite powder) films were coated onto steel substrates and tested under dry and base oil lubricated conditions. Friction and wear experiments were conducted on a ball on cylinder tribometer between polymer/composite coated cylindrical steel surface (shaft) and an uncoated steel ball as the counterface. Tests were conducted at various normal loads and speeds. In dry condition at 3 N load and 0.63?m s??1 sliding speed, the wear life of epoxy was increased by five times and coefficient of friction was nearly the same (0.18) on inclusion of graphene nanoparticle. In lubricated case, epoxy/graphene composite coating performed eight times and more than five times better than pure epoxy and epoxy/graphite respectively.  相似文献   

18.
Al6061 matrix composite reinforced with nickel coated silicon nitride particles were manufactured by liquid metallurgy route. Microstructure and tribological properties of both matrix alloy and developed composites have been evaluated. Dry sliding friction and wear tests were carried out using pin on disk type machine over a load range of 20-100 N and sliding velocities of range 0.31-1.57 m/s. Results revealed that, nickel coated silicon nitride particles are uniformly distributed through out the matrix alloy. Al6061-Ni-P-Si3N4 composite exhibited lower coefficient of friction and wear rate compared to matrix alloy. The coefficient of friction of both matrix alloy and developed composite decreased with increase in load up to 80 N. Beyond this, with further increase in the load, the coefficient of friction increased slightly. However, with increase in sliding velocity coefficient of friction of both matrix alloy and developed composite increases continuously. Wear rates of both matrix alloy and developed composites increased with increase in both load and sliding velocity. Worn surfaces and wear debris was examined using scanning electron microscopy (SEM) for possible wear mechanisms. Energy dispersive spectroscope (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscope (XPS) techniques were used to identify the oxides formed on the worn surfaces and wear debris.  相似文献   

19.
选用二硫化钼涂层和碳化钨涂层对45钢螺栓进行表面处理,通过横向振动试验研究横向交变载荷作用下螺栓连接结构的松动行为,并与常用的电镀锌涂层螺栓进行对比分析,讨论3种涂层螺栓的防松性能。利用扫描电子显微镜和电子能谱仪分析试验后螺纹表面损伤形貌及化学成分,揭示螺纹表面的磨损机制。试验结果表明:二硫化钼涂层螺栓螺纹表面的主要磨损机制为疲劳磨损、磨粒磨损和氧化磨损,碳化钨涂层和电镀锌涂层螺栓螺纹表面的主要磨损机制为疲劳磨损和磨粒磨损;相同预紧力或等效应力条件下,二硫化钼涂层螺栓因其界面摩擦因数低,防松性能较差,碳化钨涂层螺栓因其表面耐磨性能优异,防松性能最好;相同预紧力矩条件下,二硫化钼涂层螺栓因预紧力高,防松性能最好,碳化钨涂层螺栓次之,电镀锌涂层螺栓最差。  相似文献   

20.
The influence of multilayer composite surface coatings on gear scuffing load carrying capacity, gear friction coefficient and gearbox efficiency is discussed in this work.The deposition procedures of molybdenum disulphide/titanium (MoS2/Ti) and carbon/chromium (C/Cr) composite coatings are described.Tests reported in the literature, such as Rockwell indentations, ball cratering, pin-on-disc and reciprocating wear, confirm the excellent adhesion to the substrate and the tribological performance of these coatings, suggesting they can be applied with success in heavy loaded rolling–sliding contacts, such as those found in gears.FZG gear scuffing tests were performed in order to evaluate the coatings anti-scuffing performance, which both improved very significantly in comparison to uncoated gears. These results in conjunction with the friction power intensity (FPI) scuffing criterion allowed the determination of a friction coefficient factor XSC to include the coating influence on the friction coefficient expression.The composite coatings were also applied to the gears of a transfer gearbox and its efficiency was measured and compared at different input speeds and torques with the uncoated carburized steel gears. Significant efficiency improvement was found with the MoS2/Ti coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号