首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
Structural applications for adhesive bonding have been increasing in recent years due to improvements in the types of adhesives available and in improved knowledge of bonding procedures. Consequently, there exists a demand for precise numerical modeling of adhesive joint behavior, particularly along bondline interfaces where low surface energy adhesives contact high surface energy metallic oxides. The purpose of the present study is to determine the effect of electrodeposited organic paint primer (ELPO) on the stress and strain distributions within an adhesively bonded single-lap-shear joint. Initial experimental studies have shown that bonding to ELPO-primed steel adherends has enhanced strength and durability characteristics compared to conventional bonds to unprimed steel surfaces. Recent studies based on finite element analysis of varied single-lap-shear joint moduli and thicknesses, and subsequent testing of joints with two different adhesive moduli, have indicated the mechanisms involved in this phenomenon. The presence of the ELPO-primer reduced peak peel and shear stresses and allowed for more uniform stress distribution throughout the joint.  相似文献   

2.
The stresses in band adhesive butt joints, in which two adherends are bonded partially at the interfaces, are analyzed, using a two-dimensional theory of elasticity, in order to demonstrate the usefulness of the joints. In the analysis, similar adherends and adhesive bonds, which are bonded at two or three regions, are, respectively, replaced by finite strips. In the numerical calculations, the effects of the ratio of Young's moduli for adherends to that for adhesives, the adhesive thickness, the bonding area and position, and the load distribution are shown on the stress distributions at interfaces. It is seen that band adhesive joints are useful when the bonding area and positions are changed with external load distributions. Photoelastic experiments and the measurement of the adherend strains were carried out. The analytical results are in a fairly good agreement with the experimental results. In addition, a method for estimating the joint strength is proposed by using the interface stress distribution obtained by the analysis. Experiments concerning joint strength were performed and fairly good agreement is found between the estimated values and the experimental results.  相似文献   

3.
Nowadays, the use of adhesive and adhesively bonded joints have been considerably appreciated in the industry due to the dramatic reduction in bonding strength, reduced stress concentration, rust prevention, uniform bonding of the bonding surface and a significant reduction in costs compared to other types of permanent joints such as welding. In this study, the effect of adhesive thickness on creep behaviour of a single lap adhesive joint with the aid of Abaqus FEM software is investigated. It should be noted that the two-layer and two-dimensional models are considered, in which their adhesive layer is made of a reinforced epoxy resin with 0.5% carbon fiber and the adherend layers are made of carbon steel plates, which is affected by tensile forces. Since the main purpose of this paper is to study the effect of adhesive thickness on the adhesive joints behaviour, the effects of the distribution of shear stress, effective stress and creep strain were studied in different thicknesses of the adhesive layer. The results show that by increasing the thickness, the stress and the creep strain decrease, and over time, the stress decreases and the creep behaviour of adhesives increases.  相似文献   

4.
A broad finite element study was carried out to understand the stress fields and stress intensity factors behavior of cracks in adhesively bonded double-lap joints, which are representative of loading in real aerospace structures. The interaction integral method and fundamental relationships in fracture mechanics were used to determine the mixed-mode stress intensity factors and associated strain energy release rates for various cases of interest. The numerical analyses of bonded joints were also studied for various kinds of adhesives and adherends materials, joint configurations, and thickness of adhesive and different crack lengths. The finite element results obtained show that the patch materials of low stiffness, low adhesive moduli and low tapering angles are desirable for a strong double-lap joint. In the double-lap joint, the shearing-mode stress intensity factor is always larger than that of the opening-mode and both shearing and opening mode stress intensity factors increase as the crack length increases, but their amplitudes are not sensitive to adhesive thickness. Results are discussed in terms of their relationship to adhesively bonded joints design and can be used in the development of approaches aimed at using adhesive bonding and extending the lives of adhesively bonded repairs for aerospace structures.  相似文献   

5.
Structural applications of adhesive bonding have been increasing in recent years due to improvements in the types of adhesives available and in improved knowledge of bonding procedures. Consequently, there exists a demand for techniques to assess adhesive joint strength, particularly along bondline interfaces where compliant adhesives contact more rigid metallic surfaces. The present study investigates the mixed-mode response of cracked-lap-shear (CLS) joints bonded with unprimed and electroprimed steel adherend surfaces. Three bondline thicknesses, representative of structural automotive joints, were evaluated for unprimed and primed bondlines. Experimental results for static load versus debond extension were input to finite element analyses for computing debond parameters (strain energy release rates). The debonds always initiated at a through-the-thickness location that had the greatest peel component of strain energy release rate. The total strain energy release rate values correlated well with trends in joint strength as a function of bondline thickness.  相似文献   

6.
李智  游敏  孔凡荣 《化学与粘合》2006,28(5):299-301
采用有限元分析软件ANSYS,对钢制劈裂接头上胶层中部的正应力和剪切应力的分布进行了弹塑性有限元数值模拟与分析。分别考察了由弹性模量相差较大的丙烯酸酯胶和环氧树脂胶黏剂时制备的单一胶或处于不同部位的两种胶黏剂所得到的混合胶层与45钢形成的劈裂接头中的应力分布情况。结果表明,对于由单一胶形成的劈裂接头来说,采用弹性模量较低的丙烯酸酯胶黏剂所形成的接头中的正应力分布更为均匀;而混合胶所形成的劈裂接头的应力集中程度通常高于单一胶。  相似文献   

7.
A variety of test techniques have been developed to test the performance of adhesives bonded in situ within joints. Most of these techniques measure strength, fracture toughness, or adhesive modulus of the bonded joint. Techniques to measure actual stress or strain values within a bonded joint are quite few in number. The Krieger gage1 is able to measure the average shear displacement along a 12.5 mm. gage length of a thick adherend joint. It has been used primarily to measure in situ shear moduli of adhesives. Brinson and his colleagues2 proposed bonding strain gages within adhesive joints to measure strains within the adhesive. Unfortunately, these gages are only sensitive to the lateral strains and not shear or peel strains. Because the lateral strains are dominated by the behavior of the adherends rather than the adhesive, the information which can be gained is incomplete.  相似文献   

8.
Abstract

Adhesive bonding is the best alternative to riveting in aircraft structures but the strength of the adhesive bonded joint is low and is limited by strength of adhesive. Strengthening of adhesive bonding is an important requirement. In this work, an attempt has been made to strengthen the adhesive bonding by mixing different quantities of brittle adhesive in the ductile adhesive and vice-versa. Two different adhesives, one brittle (AV138) and another ductile (Araldite-2015) adhesive have been considered. Initially single lap joint has been constructed between the CFRP and aluminium with individual adhesives, then the mixture of adhesives have been used in the bonded region in varied proportions. The X-ray radiography and ultrasonic testing have been performed to check the quality of bonding. Uniaxial tensile tests have been conducted on the lap joints along with Digital Image Correlations (DIC) to obtain the individual and mixed adhesive bond strength. The failure patterns have been identified using optical and scanning electron microscope. These studies indicate that strengthening of the adhesive bonding achieved by mixing of two adhesives and highest bond strength obtained when the mixture of AV138 and Araldite-2015 adhesives are used in equal proportions.  相似文献   

9.
A structural or semi-structural adhesive is usually applied to the substrates as monomers, oligomers, or melts of polymers with reactive groups and is then polymerized or crosslinked in situ in the joint between the substrates. We have been studying a number of crosslinked functionalized polyolefins blended with tackifier used as semi-structural adhesives for bonding to oily galvanized steel surfaces. The functions of takifier, surface properties of adhesive and substrate, geometry effects of lap joints, adhesive Tβ, chain end defects, network chain length, and cure kinetics of these systems will be discussed. Our experimental results indicate that lap shear strengths of galvanized steel joints depend on adhesive storage modulus to the power of roughly 1/2. A rough estimate of the fracture energy of the adhesive bond, Ga could be obtained from this relation. Although some estimated Ga values are too low while the others are too high, they seem to be in rough accord with the degree of interfacial bonding and the locus of failure of the lap shear bonds.  相似文献   

10.
The present investigation aims to optimise the process parameters of DC glow discharge treatment through air in terms of discharge power and time of exposure for attaining best adhesive joint of high-density polyethylene (HDPE) to mild steel. The as- received and DC glow discharge exposed HDPE surfaces have been characterised by energy dispersive spectra (EDS). It is observed that with increasing power level up to 13 W, tensile lap shear strength of adhesive (Araldite AY 105) joint of HDPE to mild steel increases and then decreases. At 13 W power level, joint strength increases up to 120 s of exposure and then decreases. At the optimised condition for the surface modification, the effect of two different adhesives Araldite AY 105 and Araldite 2011 on the strength of polymer to mild steel, polymer to polymer and mild steel to mild steel joints have been examined. It is observed that tensile lap shear strength of HDPE–HDPE joint and HDPE–mild steel joint does not change with the change of adhesive and this could be possible as initiation of fracture takes place from subsurface layer of the polymer. This is confirmed by studies under optical microscopy and EDS, which shows when the polymer has been modified by exposure under glow discharge the failure is observed to initiate from subsurface layer of the HDPE, then within the adhesive cohesively and thereafter in the mild steel to adhesive interface.  相似文献   

11.
The influence of the surface modification of pressure-sensitive adhesive tapes on their adhesion behavior has been investigated. PBA [poly(butyl acrylate)] and PIB [poly(isobutylene)] adhesives were chosen as pressure-sensitive adhesives and nitrogen plasma was used for the surface modification of the adhesives. The peel force of PBA or PIB adhesive/stainless steel joints was evaluated. The nitrogen plasma treatment showed large effects on the adhesion behavior of both the PBA and the PIB adhesives. The peel force for the PBA adhesive/stainless steel joint decreased by 57 times as a result of the nitrogen plasma treatment and that for the PIB adhesive/stainless steel joint increased by 2.2 times. There are essential differences in the modification reactions caused by the nitrogen plasma between the PBA and PIB adhesives. For the PBA adhesive, cross-linking reactions occurred among the PBA polymer chains and the surface was hardened. For the PIB adhesive, degradation reactions occurred and products with a low molecular weight were formed on the surface. These differences are due to the different responses of the PBA and PIB adhesives towards the nitrogen plasma. The mechanism of the changes in adhesion behavior caused by the nitrogen plasma is discussed.  相似文献   

12.
Employing mixed adhesive joints has been proven to be very useful. This type of joint leads to improved performance by increasing strength and decreasing stresses in critical areas of the joint. In the same way, the use of the Intensity of Singular Stress Field (ISSF) has been shown to be suitable for adhesive joint calculation, since the adhesive strength can be controlled by the ISSF at the interface end. Four finite element models have been created by combining two epoxy adhesives with different mechanical properties, and therefore with different Young's moduli. New mixed adhesive joints have been compared with respect to only-one adhesive joints in terms of the ISSF. The results show a clear improvement with one of the configurations of mixed adhesive joints. A significant decrease of 35.64% in the ISSF is obtained compared to the only-one adhesive configuration.  相似文献   

13.
胶层尺寸对单搭胶接接头性能的影响研究   总被引:2,自引:0,他引:2  
针对汽车车身中应用日益广泛的钢板胶接结构,通过试验得到了不同胶层尺寸对胶接接头承载能力的影响规律,建立了钢板单搭接头的三维弹塑性有限元模型,分析了胶层尺寸对胶接接头应力分布的影响.研究结果表明:随着胶层厚度的增加,胶接件的承载能力呈先升后降的趋势,合理的胶层厚度应为0.3-0.5 mm;无论胶层厚度为多少,增加搭接区域胶层的长度或宽度.均会提高胶接件的承载能力.  相似文献   

14.
In this study, our previous experimental study was extended applying the exponential Drucker-Prager (EDP) yield criterion to define the numerical failure loads for mono and bi-adhesive single lap joints (SLJs) [Öz and Özer, 2016]. Bi-adhesive (or hybrid adhesive) joint is an alternative stress-reduction technique for adhesively bonded lap joints. The joints have two adhesives with different moduli in the overlap region. Non-linear finite element analyses were carried out for mono and bi-adhesive joints implementing the EDP material model. Distributions of EDP maximum principal stress, equivalent stress and shear stress were obtained along the middle of the adhesive thickness. Numerical failure loads were compared with our previous experimental failure loads. In addition, hydrostatic stress and equivalent plastic strain distributions for these joints under the failure loading were obtained. The general results show that experimental and numerical failure loads were in a good agreement. As a result, when bond-length ratios are selected properly and appropriate adhesives are used along the overlap length, the strength of bi-adhesive joints, compared to mono-adhesive joints, was found to increase considerably.  相似文献   

15.
Moisture durability of four low modulus adhesives was examined. The four low modulus adhesives all had the same basic moisture cure polymer but contained different fillers and additives. Hot-dipped galvanized steel was bonded to random fiber-reinforced unsaturated polyester and aged in two moisture environments for various durations. Adherend surface wipes included acetone, isopropyl alcohol and a typical surface contamination for galvanized steel (an organic lubricant). Diffusion coefficients, moisture uptake and modulus changes due to moisture environment were determined for the adhesives and the fiber-reinforced plastic (FRP). The moisture cure adhesive with clay and poly(vinyl chloride) (PVC) as fillers (adhesive 252) had the highest retained lap joint strengths. Initially, adhesive 252 had single lap joint strengths of 1.47 ± 0.08 MPa for acetone-wiped joints and 1.39 ± 0.33 MPa for organic lubricant-wiped joints. After accelerated aging in a cataplasma environment for 9 weeks, lap joint strengths fell to 0.61 ± 0.08 MPa for acetone-wiped joints and to 0.65 ± 0.11 MPa for organic lubricant-wiped joints. Environmental scanning electron microscopy (ESEM) and energy-dispersive spectrometry (EDS) showed that the actual failure locus was through a corroded zinc layer and between the adhesive and the zinc surface after aging. Dynamic mechanical analysis (DMA) showed that the modulus for adhesive 252 dropped from 21.7 to 13.9 MPa after cataplasma aging. From finite element analysis (FEA), this modulus drop corresponded to a drop in normal stress concentration from 0.75 to 0.57, and a drop in shear stress concentration from 1.41 to 1.36 at a point 0.5 mm from the end of the single lap joint overlap.  相似文献   

16.
The tack of polymers to be used as adhesives is measured by a two-stage process of bond formation and bond separation. Bond formation is governed by the contact time, the contact force, the roughness of the surfaces, surface and interfacial tensions, and the mechanical or viscoelastic properties of the adhesive and substrate. This paper presents experimental studies of the contact formation of various model polymers on steel surfaces with well-defined and different degrees of roughness. The tack was measured with an instrument of the probe tack type, which determines the adhesive (interfacial) fracture energy per unit of interface as a measure of the tack and by means of which the most important parameters during bond formation and separation, such as the contact time, contact force, rate of separation, and temperature, can be adjusted and measured over sufficiently wide ranges. In the typical time interval for the contact time, the polymers are found in the plateau range of their viscoelastic spectrum. This means that entanglements strongly affect their bonding behaviour. Good agreement was found between the experimental results presented in this study and a model of contact formation on rough surfaces, published recently by Creton and Leibler [1], especially concerning the dependence of the adhesive fracture energy on the contact force and the contact time for smooth and rough substrate surfaces. The influence of the surface roughness becomes significant at low contact forces, where full contact is not yet developed on a rough substrate surface, and for polymers with comparatively high moduli. The fracture energy increases with the contact time and shows the same time dependence as the reciprocal modulus.  相似文献   

17.
Impact fatigue behaviors of the steel/CTBN-modified adhesive/steel butt joint were investigated. The adhesive butt joint specimens used in the present work were bonded with epoxy–polyamide and CTBN-modified epoxy–polyamide adhesives. Fatigue tests were also conducted under nonimpact stress conditions to compare with the results from the impact fatigue test. The experiments showed that for the joint specimen from the adhesive modified with the CTBN the fatigue strength becomes higher under both of the stress conditions. In particular, the fatigue strength was improved remarkably under impact stress condition, that is, the distinct stress cycles dependence of impact strength was decreased by modifying the adhesive with CTBN. Furthermore, the effect of adhesive thickness on the fatigue strength was also discussed for the adhesive joint modified with CTBN. Under impact stress conditions, the relation between the fatigue strength and the adhesive layer thickness is different from that under the nonimpact one.  相似文献   

18.
While structural adhesives are used widely, relatively little is known regarding their plastic behavior. Few studies exist, for instance, to experimentally validate yield criteria for adhesives. The following considered adhesive joints under biaxial stress using an Arcan fixture. Adhesive strain was measured from the relative displacement of the adherends using digital image correlation. Two adhesive systems showed better correlation with a von Mises yield criterion in comparison to the commonly used Drucker-Prager criterion. The results were applied to a single lap shear joint, with mixed mode stress in the gauge section, which again showed better agreement with von Mises. The Drucker-Prager criterion, for instance, overestimated the yield stress by up to 11% while von Mises was within 2%.  相似文献   

19.
Abstract

To obtain a good bonding strength of steel/CFRP adhesive joint, the steel surface was machined by grooving process. Short aramid fibers were mixed into the adhesive layer to achieve the further adhesion strength. In the pressing process of steel/CFRP specimen preparation, short aramid fibers with the diameter of several micrometers could be embedded in the grooved gap and the rough surface of CFRP. The higher strength aramid fibers had been not only improved interfacial strength of steel/epoxy and CFRP/epoxy, but also reinforced the adhesive layer due to the bridging activities of aramid fibers. In this study, Mode II fracture strength of grooved-steel/CFRP adhesive joints was investigated by end-notch bending test. The ultimate load and fracture energy of specimens have been improved by 15.7 and 6.8%, in comparison to specimens with smooth steel surface, respectively. The reinforcing mechanisms of CFRP/steel bonding joint as a result of short aramid fibers were discussed according to the failure modes of specimens, and scanning electron microscopy observation and experimental results were carried out.  相似文献   

20.
A variety of test techniques have been developed to test the performance of adhesives bonded in situ within joints. Most of these techniques measure strength, fracture toughness, or adhesive modulus of the bonded joint. Techniques to measure actual stress or strain values within a bonded joint are quite few in number. The Krieger gage1 is able to measure the average shear displacement along a 12.5 mm. gage length of a thick adherend joint. It has been used primarily to measure in situ shear moduli of adhesives. Brinson and his colleagues2 proposed bonding strain gages within adhesive joints to measure strains within the adhesive. Unfortunately, these gages are only sensitive to the lateral strains and not shear or peel strains. Because the lateral strains are dominated by the behavior of the adherends rather than the adhesive, the information which can be gained is incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号