首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
An in-depth understanding of nutrient management variability on the regional scale is urgently required due to rapid changes in cropping patterns and farmers’ resource use in peri-urban areas of China. The soil surface nitrogen (N) balances of cereal, orchard and vegetable systems were studied over a 2-year period on smallholder fields in a representative peri-urban area of Beijing. Positive soil surface N balances were obtained across all three cropping systems. The mean annual N surplus of the vegetable system was 1,575 kg N ha−1 year−1, or approximately 3 times the corresponding values in the cereal (531 kg N ha−1 year−1) and orchard systems (519 kg N ha−1 year−1). In the vegetable system, animal manure (1,443 kg N ha−1 year−1 on average) was the major source of N input (65 % of the total N input) and the factor with strongest impact on the N surplus. In the cereal system, however, about 74 % of the total N input originated from mineral fertilizer application which was the major contributor to the N surplus, while in the orchard system, the N surplus was strongly and positively correlated with both mineral fertilizer and animal manure applications. Furthermore, within each cropping system, N fertilization, crop yields and N balances showed large variations among different smallholder fields, especially in orchard and vegetable systems. This study highlights that differences in farming practices within or among cropping systems should be taken into account when calculating nutrient balances and designing strategies of integrated nutrient management on a regional scale.  相似文献   

2.
Nutrient budgets may be useful tools for nutrient management of crops especially if they estimate the nutrient fluxes available from a variety of sources including organic and inorganic fertilizer, crop residues and soil organic matter. The aim of the present study was to develop a budget of available nutrients by determining the contribution of mineralized nutrient fluxes and fertilizer input relative to nutrient losses and removal in harvested products in the overall N and P balances. N and P inputs and outputs and available N and P fluxes in the soil were estimated for 3 consecutive maize crops where inputs and outputs were altered by NP fertilizer, compost and stubble removal on a Rhodic Kandiustox. A sensitivity analysis of calculated and measured nutrient budget items was conducted to identify the main factors affecting the accuracy of the nutrient balance calculations. Mineral fertilizer rate was the major factor for maize nutrient budgets as shown by its contribution to N and P balances. Without mineral fertilizer application, soil organic matter (SOM) mineralization was the most important within-season nutrient input. In the case of N, shoot uptake was the main output followed by denitrification. Phosphorus adsorption by the soil was the major P output from the available pools followed by shoot uptake. SOM mineralization maintained the pools of available N and P if stubble of the previous crop was returned. Mineral fertilizer application, which produced surplus balances of N and P, would however, be needed to attain high yield, even with stubble return. The available N and P from compost were not significant inputs in the nutrient balances until year 3. Total N and resin extractable P in soil after five crops supported the calculated nutrient balances indicating the importance of available nutrient fluxes in calculating N and P balances.  相似文献   

3.
A survey on current fertilizer practices and their effects on soil fertility and soil salinity was conducted from 1996 to 2000 in Beijing Province, a major vegetable production area in the North China Plain. Inputs of the major nutrients (NPK) and fertilizer application methods and sources for different vegetable species and field conditions were evaluated. Excessive N and P fertilizer application, often up to about 5 times the crop requirement in the case of N, was very common, especially for high-value crops. Potassium supply may have been inadequate for some crops such as leafy vegetables. Urea, diammonium orthophosphate ((NH4)2HPO4) and chicken manure were the major nutrient sources for vegetable production in the region. Over 50% of N, 60% of P and nearly 90% of K applied originated from organic manure. Total N application rate for open-field Chinese cabbage from organic manure and inorganic fertilizers ranged from 300 to 900 kg N ha–1 on 78% of the farms surveyed. More than 35% of the surveyed greenhouse-grown tomato crops received > 1000 kg N ha–1 from organic and inorganic sources. A negative K balance (applied K minus K removed by the crop) was found in two-thirds of the surveyed fields of open-field Chinese cabbage and half of the surveyed fields of greenhouse-grown tomato. Plant-available N, P and K increased with increasing length of the period the greenhouse soils had been used for vegetable production. Similarly, soil salinity increased more in greenhouse soils than in open-field soils. The results indicate that balanced NPK fertilizer use and maintenance of soil quality are important for the development of sustainable vegetable production systems in this region.  相似文献   

4.
A long-term experiment was carried out in the dryland of northern China to assess the effects of applications of maize stover, cattle manure and NP (1:0.44) fertilizer on partial nitrogen (N), phosphorus (P) and potassium (K) balances, extractable soil N (SEN), P and K, and soil organic matter (SOM) in a spring maize cropping system, under reduced tillage conditions. The experiment was set-up according to an incomplete, optimal design, with three factors at five levels and 12 treatments, including a control with two replications. Statistical analyses using multiple regression models showed that the partial N, P and K balances were strongly influenced by annual variations in the amounts of soil water at seeding (SWS) and growing season rainfall (GSR). Most treatments had positive P but negative N and K balances. Cumulative P and K balances were reflected in extractable soil P (P-Olsen) and K (exchangeable K), but the weak relationships indicated that the sorption of P and buffering of K were strong. Cumulative balances of effective organic carbon (C) were weakly related to soil organic C (SOC) content after 12 years. Negative C balances were related to decreases in SOC, but positive C balances were not translated into increases in SOC. The analysis of nutrient balances and soil fertility indices revealed that nutrient inputs in most treatments were far from balanced. It is concluded that the concepts of ‘ideal soil fertility level’ and ‘response nutrient management’ provide practical guidelines for improving nutrient management under the variable rainfall conditions of dry land areas in northern China.  相似文献   

5.
Trends in nitrogen (N) and phosphate (P) balance for several crops were calculated for the nation and by prefecture for 5-year periods from 1985 to 2005. Prefectural chemical N and P fertilizer applications for paddy rice and upland crops declined but applications for vegetable crops increased during the period like as national trends. Prefectural chemical N and P applications for tea, orchard and forage remained unchanged in line with national trends. Manure N and P applications for each crop did not follow the trends for chemical fertilizer. Although chemical fertilizer application declined, N and P crop withdrawal for paddy rice, upland crops and tea increased as a result of optimizing fertilizer timing and placement. Nitrogen and P balance for each crop indicated a surplus; P surplus was larger than N surplus, because of higher P input and lower crop P withdrawal. Chemical N fertilizer determined N surplus except for forage, which was determined by manure application. Therefore N surplus on paddy rice, upland crops, orchard and tea declined and increased on vegetables. Forage recorded an N deficiency in two 5-year periods nationally because of low manure input. Because P balance was also determined by chemical P fertilizer, the P surplus for paddy rice and upland crops declined and the P surplus for vegetables increased during the period. Total P surplus was reduced on paddy rice and upland crops. Trends for chemical fertilizer, manure and N and P balance varied widely among prefectures, especially for P. Crop withdrawal of N and P varied relatively little. Although prefectural trends did not always follow the national trend, we could conclude that the negative environmental effects of Japanese crop production have diminished recently, and an improvement in N and P balance in vegetable production can be expected.  相似文献   

6.
Nitrogen,phosphorus, and potassium budgets in Indian agriculture   总被引:1,自引:0,他引:1  
Nutrient budgeting is a useful tool in determining present and future productivity of agricultural land as well as undesirable effects of nutrient mining and environmental pollution. Budgets of N, P, and K were calculated for India for 2000–2001 taking into consideration the inputs through inorganic fertilizer, animal manure, compost, green manure, leguminous fixation, non-leguminous fixation, crop residues, rain and irrigation water and outputs through crop uptake and losses through leaching, volatilization and denitrification. Inorganic fertilizer was the dominant source contributing 64% of N and 78% of P inputs in Indian agriculture, whereas K input through inorganic fertilizer was 26%. Removals of N, P, and K by major agricultural crops in the country were 7.7, 1.3 and 7.5 Mt, respectively. There were positive balances of N (1.4 Mt) and P (1.0 Mt) and a negative balance of K (3.3 Mt). It was projected that N, P, and K requirement by Indian agriculture would be 9.78, 1.57 and 9.52 Mt, respectively, to meet the food demand of 1.3 billion people by 2020. The study identified the ‘hotspots’ of excess nutrient loads as well as of nutrient mining regions in India to improve our ability to predict environmental degradation due to imbalanced fertilizer use. However, there are some uncertainties in India’s nutrient budget and more research is required to reduce these uncertainties.  相似文献   

7.
Potassium (K) is important for crop quality, and this knowledge has stimulated substantial K fertilizer application in intensive cropping systems of China, resulting in an unbalanced nutrient supply and the squandering of K resources. In this study, we assessed the status of K in China’s intensive vegetable planting systems using data from the literature and our recent results. Scenario analysis was designed to estimate the potential for reducing chemical K fertilizer based on the K recommended strategy and manure replacement strategies. The results showed that K surplus, and soil exchangeable K levels in vegetable fields increased during the period with a stable growing area (2003–) compared to the period with an expanding growing area (before 2003). Much higher K surplus and accumulation and more severe K leaching were observed in greenhouse. Excessive K application contributed to low K use efficiency and K resource waste. Based on the data analysis, the K consumption derived from chemical fertilizer and organic amendments was 8.2 million Mg K, though the theoretical demand for vegetable planting was only 6.0 million Mg K with the K recommendation strategy of “build-up and maintenance (B&M)”. Scenario analysis suggested that chemical K fertilizer application could be reduced by 21.7, 69.6 and 54.3% by considering alternative K sources derived from manure and straw, as based on the conventional proportion, N-based strategy and P-based strategy, respectively. Maximizing the use of K from organic amendments requires limiting manure application by considering environmental deterioration and the topdressing requirement with chemical K fertilizer.  相似文献   

8.
Intensification of Swiss agriculture after 1950 led to an increase in productivity and a range of environmental and health problems provoked by growing inputs of nitrogen (N), phosphorus (P) and potassium (K) into the agricultural cycle. In 2008, farm-gate balances showed surpluses of 108 kg N ha−1, 5.5 kg P ha−1 and 28 kg K ha−1 for Swiss agriculture. Nutrient surpluses rose between 1975 and 1980 and then decreased significantly until 2008, with percentage reductions being higher for P (80%) and K (54%) than for N (27%). The introduction of direct payments for ecological programmes such as integrated production in 1993 led to a more pronounced decrease in nutrient surpluses for several years, until most farmers had joined these programmes. Lower surpluses could primarily be attributed to reductions in mineral fertilizer use and N deposition. Biological N fixation and atmospheric deposition contributed most to the uncertainty in calculating nutrient balances. N cycle was characterized by substantial inputs into and outputs out of the agricultural sector, whereas P and K cycles were more closed. In future, nutrient balances at a regional level are required to identify areas with high surpluses. In Switzerland, a further reduction in surpluses could be achieved by better feeding strategies and an improved fertilizer management, mainly of animal manure.  相似文献   

9.
Contribution of livestock excreta to nutrient balances   总被引:6,自引:0,他引:6  
Livestock excreta make an important contribution to soil nutrient inputs and in many developing countries are the only significant input. However, there is little quantitative information available on excreta, manure production, and application and this makes it difficult to obtain meaningful soil nutrient balances. A model has therefore been developed to calculate the excreta produced and manure recovered at national levels. Excretion rate coefficients are developed for six farm animal categories and using information on animal numbers and weights obtained from the FAO Internet database, excreta production is calculated for 195 countries and the World for 1996. In addition, time series results for the period 1961 to 1996 are presented for Kenya and The Netherlands, representing contrasting agricultural systems, and for the World. Total livestock excreta in 1996 were estimated to contain 94 million tonnes of N, 21 million tonnes of P, and 67 million tonnes of K. Cattle are the largest contributors with 60% of the total; pigs and poultry account for 10% and 9%. Nutrients recovered as manure were estimated as 34 million tonnes of N, 8.8 million tonnes of P, and 22.9 million tonnes of K. Recovery of excreta as manure from cattle is about 30%, but for pigs and poultry, which are usually housed, recovery is nearly 80%. As a percentage of total soil nutrient inputs, for N, manure accounts for 14%, for P 25%, and for K 20%. The contribution made by manure relative to fertilizers plus manure is declining. Since 1961, the percentages have decreased; for N from 60 to 25, for P from 50 to 38, and for K from 75 to 57. For most countries, percentages will decrease further as fertilizer use increases, but for some developed countries, such as The Netherlands and Japan, with large livestock industries, the percentage of manure is expected to increase and fertilizer demand will fall. For many developing countries manure will remain the main nutrient input. The production of livestock excreta and manure, and fertilizer use in Kenya and The Netherlands are discussed.  相似文献   

10.
This study was conducted to determine soil nutrient spatial variability and the factors influencing it in a vegetable production area using traditional statistics and geo-statistics. The study area encompassed 55 ha and consisted of 182 farmer's plots belonging to six production groups in the Yutian county of China. Two hundred and seventeen soil samples were collected on a 50×50-m grid at depths of 0–20 cm prior to the plots being sown for cabbage. Vegetable production history, including varieties, rotation systems and fertilizer use, at the sampling sites was also examined. Soil pH, organic manure (OM), NO3–N, available P, K, Zn, and other nutrients and particle size were measured. The results showed that N, P, K and Zn were the main limiting nutrient factors in the soil. Distinct semi-variance structures of spatial variability were observed for soil NO3–N, available P, K and Zn, with the range of spatial correlation being 204–348 m. Significant spatial distribution similarity was found for soil NO3–N, P, K and Zn, with relatively high contents of all these nutrients in some areas of the study area and relatively low contents in other areas. The correlation of soil NO3–N, P and K content with vegetable production history and fertilizer application rates (N, P2O5 and K2O) suggested that vegetable variety and history of fertilizer use are important factors to be considered in the development of a soil nutrient management program in the study area.  相似文献   

11.
Nutrient balances are useful indicators to assess the sustainability of farming systems. This study study investigates inflow and outflow of major nutrients in urban and periurban production systems in Kano, Nigeria. To this end, 16 households representing three different urban and peri-urban (UPA) farming systems were studied using the MONQI toolbox (formerly known as NUTMON) to calculate nutrient flows and economic performances. The farm nitrogen (N) balance was positive at 56.6, 67.4 and 56.4 kg farm?1 year?1 for commercial garden and crop-livestock (cGCL), commercial gardening and semi-commercial livestock (cGscL) and commercial livestock subsistence field cropping (cLsC) farm types, respectively. The same trend was observed for phosphorus (P) and potassium (K) in all farm types except an annual negative K balance of 16 kg farm?1 in cGCL. Across the different activities within the farms, land uses had positive N (359, 387 and 563 kg N ha?1 year?1) and P (74, 219 and 411 kg P ha?1 year?1) balances for all farm types, but again a negative K balance in cGCL with an average loss of 533 kg K ha?1 year?1. Partial nutrient balances in livestock production indicated a positive balance for all nutrients across the farms types but were slightly negative for P in cLsC. Commercial livestock keeping (cLsC) was economically more profitable than the other farm types with an average annual gross margin (GM) and net cash flow (NCF) of $9,033 and $935. Cropping activities within cGCL and cGscL had GMs of $1,059 and $194 and NCFs of $757 and $206, respectively, but livestock activities in both farm types incurred financial losses. Potassium inputs were limited under vegetable and crop production of cGCL, threatening long-term K nutrient availability in this system. Overall, the results indicated large annual surpluses of N and P in urban and peri-urban vegetable and crop production systems which pose a potential threat when lost to the environment. Appropriate policies should aim at promoting sustainable production through efficient nutrient management in the Kano UPA sector.  相似文献   

12.
Urban and peri-urban agriculture (UPA) has often been accused of being nutrient inefficient and producing negative externalities. To investigate these problems for the West African capital Niamey (Niger), nutrient inputs through fertilizer and manure to 10 vegetable gardens and 9 millet fields and nutrient offtakes through harvests were quantified during 24 months, and contamination of irrigation water and selected vegetables with faecal pathogens and heavy metals was determined. Annual partial horizontal balances for carbon (C), nitrogen (N), phosphorus (P) and potassium (K) amounted to 9,936 kg C ha−1, 1,133 kg N ha−1, 223 kg P ha−1 and 312 kg K ha−1 in high input vegetable gardens as opposed to 9,580 kg C ha−1, 290 kg N ha−1, 125 kg P ha−1 and 351 kg K ha−1 in low input gardens. In high input millet fields, annual surpluses of 259 kg C ha−1, 126 kg N ha−1, 20 kg P ha−1 and 0.4 kg K ha−1 were recorded, whereas surpluses of 12 kg C ha−1, 17 kg N ha−1, and deficits of −3 kg P ha−1 and −3 kg K ha−1 were determined for low input fields. Counts of Salmonella spp. and Escherichia coli yielded above threshold contamination levels of 7.2 × 104 CFU 25 g−1 and 3.9 × 104 CFU g−1 in lettuce irrigated with river water and fertilized with animal manure. Salmonella counts averaged 9.8 × 104 CFU 25 g−1 and E. coli 0.6 × 104 CFU g−1 for lettuce irrigated with wastewater, while these pathogens were not detected on vegetables irrigated with pond water. These results underline the need for urban gardeners to better adjust the nutrients applied to crop requirements which might also reduce nutrient accumulations in the soil and further in the edibles parts of the vegetables. Appropriate pre-treatment of irrigation water would help improve the quality of the latter and enhance the food safety of vegetables determined for the urban markets.  相似文献   

13.
Organic farming systems are characterized by the strong regulation of the import of nutrients into the farming system to replace nutrient losses via sold products. In the present study mineral nutrient flows and balances of P, K and magnesium (Mg) were analysed for a mixed organic cropping system with dairy husbandry and for a stockless organic farming system. Also the influence of biogas digestion of farmyard residues (stable wastes, crop residues, etc.) as well as the effect of the import of substrates for biogas digestion on plant mineral nutrient uptake and farmgate nutrient balances was analysed. The objectives of the current study were; (1) to study the effects of anaerobic digestion of cattle manure and crop residues on plant mineral nutrient uptake; and (2) to model nutrient flows and balances related to the input of different kind of substrates for biogas digestion at the farmgate. Results indicated that slurry digestion did not influence plant P and K uptake. Import of single allowed substrates for digestion would lead to large imbalances in nutrient inputs compared to withdrawals. Most of the suited substrates for biogas digestion were associated with large K surpluses and insufficient P returns in comparison to mineral nutrient outputs via sold animal and plant products.  相似文献   

14.
In organic agriculture, the internal farm nutrient cycle must bequantified to ensure high system productivity accompanied by environmentallysound production processes. In contrast to common farm-gate and field balances,budgeting at the stall level is seldom undertaken. When budgeting mixed farmingsystems, a substantial lack of nutrients can be detected in the forageand straw input – stall – manure output nutrient flow chain.Therefore, stall balances focus on a central component of whole-farm nutrientbudgets for developing efficient nutrient management strategies. At theexperimental farm for organic agriculture at Wiesengut in Hennef, Germany, allsolid mass flows for a suckler herd and a herd of beef bulls were measured.Relative balance values obtained for dry matter and C (45 to 56%), N (16to 36%), P (–7 to 22.5%), K (0 to 13%) and ash(–4 to 7%) varied over a wide range. Balances are very sensitive tovariations in mass flow and nutrient content for components with high nutrientcontents and/or a large contribution to total mass flow (e.g. manure, silage).In developing strategies to minimise N losses, by reducing N surplus in theration, one must consider, that, in contrast to dairy farms, a suckler herd forbeef production integrated in an organic farm has to adapt to crop productiondemands.  相似文献   

15.
Intensive vegetable production in urban and peri-urban agriculture (UPA) of West African cities is characterized by high nutrient inputs. However, little is known about nitrogen (N) and carbon (C) losses in these systems, in particular during the storage of manure, the main organic fertilizer in these systems. We therefore aimed at quantifying gaseous emissions of ammonia (NH3), nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) as well as leaching losses of C, N, phosphorus (P) and potassium (K) from animal manure stored in vegetable gardens of Niamey, Niger. During a first 3.5-month experiment in the hot dry season, cumulative gaseous N losses, measured with a closed-chamber system, were with 0.11 g kg−1 manure DM highest (P < 0.05) in the uncovered control treatment accounting for 1.8% of total manure N. Nitrogen losses decreased by 72% under plastic sheet roofing and by 50% under roofing + ground rock phosphate (RP) application at 333 g kg−1 manure DM. Carbon losses from manure amounted to 73 g kg−1 DM in the control and to 92 g kg−1 DM and 68 g kg−1 DM under roofing and under roofing + RP, respectively. In a second 3.5-month experiment conducted in the rainy season, C losses from the control were 164 g kg−1 manure DM and reduced to 77 and 65% of the control by roofing and roofing + RP, respectively. Leaching losses during the rainy season were only observed for the unroofed control and averaged 2.1 g C, 0.05 g N, 0.07 g P and 1.8 g K kg−1 manure DM.  相似文献   

16.
The degree of soil mining by agricultural production in Southern Mali is assessed by calculating nutrient balances: differences between the amount of plant nutrients exported from the cultivated fields, and those added to the fields. Export processes include extraction by crops, losses due to leaching, to erosion, and to volatilization and denitrification. Inputs include applications of fertilizer and manure, restitution of crop residues, nitrogen fixation, atmospheric deposition of nutrients in rain and dust, and enrichment by weathering of soil minerals. Nutrient balances are calculated for N, P, K, Ca, and Mg. Both pessimistic and optimistic estimates are given.The resulting figures indicate, even when the most optimistic estimates are used, large deficits for nitrogen, potassium and magnesium. For the region as a whole, the calculated deficits are -25 kg N/ha,-20 kg K/ha, and -5 kg Mg/ha. Further, acidification is to be expected, in particular in areas where cotton is grown. The deficits are caused by traditional cereal crops, but also by cotton and especially by groundnut. The latter two crops are fertilized, but insufficiently. It is important to note, that the negative figures are not automatic recommendations for application of a specific amount of additional fertilizer. For phosphorus and calcium the balance of the region as a whole appears to be about in equilibrium, but locally large variations may occur.Erosion and denitrification are important causes of nutrient loss, accounting respectively for 17 and 22% of total nitrogen exports. Atmospheric deposition and weathering of minerals in the soil are still important nutrient inputs that contribute as much as nutrients as organic and mineral fertilizer combined. Nutrient depletion is very large in comparison to the amount of fertilizer applied. Drastic options, such as doubling the application of fertilizer or manure, or halving erosion losses, even if feasible, would still not be enough to make up for the calculated deficits.The annual value of withdrawn nutrients, if related to prices of fertilizers, varies between 10,000 and 15,000 FCFA/ha (40-60 US $/ha). Since the estimated average gross margin from farming in this area is 34,000 FCFA/ha (123 US $/ha), soil mining appears to provide an amount equal to 40% of farmers' total income from agricultural activities.  相似文献   

17.
Low yields and high risk characterize many rain-fed lowland rice environments, including those in Laos. Drought and fluctuating soil-water conditions (from aerobic to anaerobic states) can limit productivity and the efficient use of applied nutrients. Although addition of organic matter may improve the efficiency of fertilizer use, on-farm residues, for example farmyard manure (FYM), rice straw and rice hulls, are, currently, poorly utilized in these systems. Single and multi-year experiments were designed to evaluate the effect of these residues on rice productivity and efficiency of fertilizer use at four sites. Rice yield without fertilizer but with addition of residues ranged from 1.1 to 1.7 t ha−1 across sites and years. In response to fertilizer, yields increased on average by 1.4 t ha−1. For all sites and years there was a significant response of yield to organic residues applied without fertilizer, with responses ranging from 0.2 to 1.4 t ha−1. In 58% of cases there was no residue×fertilizer interaction (benefits of residues when applied with fertilizer were additive). In 38 and 4% of cases the interaction was negative (no response to residues if fertilizer was already applied) or positive (synergistic), respectively. In the multi-year studies, the type of interaction varied between years, suggesting that seasonal events, rather than soil type, determine the type of interaction. The greatest benefits of applying organic and chemical fertilizers together were observed in years when soil-water conditions were unfavorable (fluctuating anaerobic–aerobic conditions). The long-term effects of these different management strategies on soil nutrient balances suggest that N, P, and K balances were maintained as a result of balanced commercial fertilizer management but that addition of residues further enhanced these balances. All residues, when applied alone, resulted in positive soil Si balances; only with FYM were long-term N, P, and K balances maintained or positive, however. For resource-poor farmers, applying on-farm residues can be a sustainable approach to increasing productivity.  相似文献   

18.
The rapidly increasing population and associated quest for food and feed in China has led to increased soil cultivation and nitrogen (N) fertilizer use, and as a consequence to increased wind erosion and unbalanced crop nutrition. In the study presented here, we explored the long-term effects of various combinations of maize stover, cattle manure and nitrogen (N) and phosphorus (P) fertilizer applications on maize (Zea mays L.) yield and nutrient and water use efficiencies under reduced tillage practices. In a companion paper, we present the effects on nutrient balances and soil fertility characteristics. The ongoing factorial field trial was conducted at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The incomplete, determinant-optimal design comprised 12 treatments, including a control treatment, in duplicate. Grain yields and N, P, and potassium (K) uptakes and N, P and K use efficiencies were greatly influenced by the amount of rain during the growing season (GSR), and by soil water at sowing (SWS). There were highly significant interactions between GSR and added stover and manure, expressed in complex annual variations in grain yield and N, P and K use efficiencies. Annual mean grain yields ranged from 3,000 kg ha−1 to 10,000 kg ha−1 and treatment mean yields from 4,500 kg ha−1 to 7,000 kg ha−1. Balanced combination of stover (3,000–6,000 kg), manure (1,500–6,000 kg) and N fertilizer (105 kg) gave the highest yield. Stover and manure were important for supplying K, but the effects differed greatly between years. Overall mean N recovery efficiency (NRE) ranged from 28% to 54%, depending on N source. NRE in wet years ranged from 50% to 90%. In conclusion, balanced combinations of stover, manure and NP fertilizer gave the highest yield and NRE. Reduced tillage with adding stover and manure in autumn prior to ploughing is effective in minimizing labor requirement and wind erosion. The potentials of split applications of N fertilizer, targeted to the need of the growing crop (response farming), should be explored to further increase the N use efficiency.  相似文献   

19.
Fertilization with manure is widely adopted by farmers in the semiarid region of northeastern Brazil, although the quantity of available manure is limited. Thus, among other alternatives, gliricidia has been used as an additional source of organic fertilizer. The objective of this study was to evaluate the accumulation and apparent recovery of N, P and K after using different forms of gliricidia and manure application in the intercropping of corn, cowpea and cotton in three crop cycles in the semi-arid northeast region of Brazil. The following treatments were used: gliricidia incorporated into the soil before planting; gliricidia spread on the surface of the soil at 45 days after planting; manure and gliricidia incorporated into the soil before planting; manure incorporated into the soil before planting and gliricidia spread on the surface of the soil at 45 days after planting; manure incorporated into the soil before planting; and no addition of organic fertilizer (control). Accumulations followed the same pattern as biomass production but differed greatly from the concentrations. Low apparent recoveries were obtained in the first and second cycles, and high apparent recoveries were obtained in the third cycle. The nutrient balances indicated that the incorporation of gliricidia before planting or spread on the surface does not meet crop needs. The incorporation of manure as well as manure and gliricidia when applied on the surface, were able to meet growth needs and maintain soil fertility.  相似文献   

20.
The management of specialised organic crops for vegetable and fruit production require the use of imported fertilizers. A wide range of fertilizers is currently available to organic farmers. These include bulky organic materials with a relatively low nutrient concentration commonly used as base dressing (e.g. composts, solid animal manures) and complementary commercial organic fertilizers with relatively high nutrient concentrations to adjust nutrient supply to crop requirements (e.g. feather meal, hoof and horn meal, vinasse, meat and bone meal, etc.). Nutrient imbalances are a major threat affecting the long term sustainability of horticultural and fruit cultivation systems. Major reasons for these imbalances are the biased element composition of base as well as complementary fertilizers in relation to the nutrient offtakes via harvested products. Gaseous nitrogen losses during manure management and gaseous as well as leaching nitrogen losses after application are major reasons for such nutrient imbalances, as they lead to a relative increase in the concentration of other elements. Conceptual weaknesses in the fertilizer approach in organic farming exist, namely the preferred application of slow release nitrogen fertilizers often rich in phosphorus. This review suggests that the current soil fertility approaches based on application of solid fertilizers and simultaneously a low rate of N inputs via N2 fixation do not foster balanced nutrient levels. The key challenge is to design cropping systems with a higher share of N inputs via biological N2 fixation, and to find fertilizers with a nutrient stoichiometry better suited to match the overall specific offtakes of fertilized crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号