首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of a first phase of an indoor radon survey in a total of 1610 dwellings distributed in nine cities of the Eastern and the Western provinces of Saudi Arabia are presented. The objective of this radon survey was to obtain representative indoor radon data for seven cities in the Eastern province. Khafji, Hafr Al-Batin, Abqaiq, Qatif, Al-Ahsa, Dammam and Khobar and to compare this with two cities in the Western province, Madina and Taif. So far, detailed radon data is not available for Saudi Arabia: therefore, this radon survey provides a base line for Saudi Arabia in the Radon World Atlas. On average, 200 indoor radon dosemeters were distributed in each city and placed for a period of one year starting from May 2001 to May 2002. The total number of collected dosemeters was 847. A total of 724 houses and 98 schools were covered in this survey. The results of the survey in the cities showed that the overall minimum, maximum and average radon concentrations were 1, 137 and 22 Bq m(-3), respectively. Geometric mean and geometric standard deviations of the radon distribution were found to be 18 and 1.92, respectively. In one of the dwellings in Qatif city, radon concentration, measured by a passive system and then confirmed by an active system, was found to be 535 +/- 23 and 523 +/- 22 Bq m(-3), respectively. The result of a radon survey in 98 schools showed that the minimum, maximum and average radon concentrations were 1, 70 and 19 Bq m(-3), respectively. The average radon concentration for each city was also determined. The lowest average radon concentration (8 Bq m(-3)) was found in Al-Ahsa while the highest average concentration (40 Bq m(-3)) was found in Khafji.  相似文献   

2.
An indoor radon survey was carried out recently in nine cities of Saudi Arabia using nuclear track detectors (NTD)-based passive radon detectors. The survey included Qatif City in the Eastern Province of Saudi Arabia, where 225 detectors were collected back successfully. It was found that the average indoor radon concentration in the dwellings was 22 +/- 15 Bq m(-3). However, one of the dwellings showed an anomalous radon concentration of 535 +/- 23 Bq m(-3). This finding led to a detailed investigation of this dwelling using active and passive techniques. In the active technique, an AlphaGUARD 2000 PRQ radon gas analyser was used. In the passive technique, CR-39 based passive radon detectors were used in all the rooms of the dwelling. Radon exhalation from the wall and the floor was also measured using the can technique. The active measurement confirms the passive one. Before placing the passive radon detectors in all the rooms of the two-storey building, the inhabitant was advised to ventilate his house regularly. The radon concentration in the different rooms was found to vary from 124 to 302 Bq m(-3). Radon exhalation from the floor and the wall of the room with the anomalous radon concentration was found to vary from 0.5 to 0.8 Bq m(-2) h(-1). These low radon exhalation rates suggest that the anomalous radon concentration is most probably due to underground radon diffusion into the dwelling through cracks and joints in the concrete floor.  相似文献   

3.
The results of radon concentration measurements carried out in dwellings with natural ventilation for 1 y in Bangalore are reported. Measurements, covering three sessions of the day (morning, afternoon, night) were performed two times in a month for 1 y at a fixed place of each dwelling at a height of 1 m above the ground surface in selected dwellings. The low-level radon detection system (LLRDS), an active method, was used for the estimation of radon concentration. The measurements were aimed to understand the diurnal variation and the effect of ventilation rate and flooring type on indoor radon concentration. The geometric mean (± geometric standard deviation) of indoor radon concentration from about 500 measurements carried out in 20 dwellings is found to be 25.4 ± 1.54 Bq m?3. The morning, afternoon and night averages were found to be 42.6 ± 2.05, 15.3 ± 2.18 and 28.5 ± 2.2 Bq m?3, respectively. The approximate natural ventilation rates of the dwellings were calculated using the PHPAIDA--the on-line natural ventilation, mixed mode and air infiltration rate calculation algorithm and their effects on indoor radon concentrations were studied. The inhalation dose and the lung cancer risk due to indoor radon exposure were found to be 0.66 mSv y?1 and 11.9 per 10? persons, respectively. The gamma exposure rate was also measured in all the dwellings and its correlation with the inhalation dose rate was studied.  相似文献   

4.
The authors present the results of a year-long survey of the indoor radon concentration levels in the FYR of Macedonia. A total number of 437 dwellings in eight statistical regions were subject to radon concentration measurements by using CR-39 track detectors. The annual mean indoor radon concentration in each measuring site was estimated from the four individual measurements with 3 months duration. The measuring period was from December 2008 to December 2009. The distribution of the results was nearly log-normal. The arithmetic and geometric mean values of the annual mean value of radon concentration were estimated to be 105 ± 84 and 84*/1.9 Bq m(-3), respectively. The annual effective dose due to indoor exposure to radon in the dwellings was estimated to be 2.1*/1.9 mSv y(-1).  相似文献   

5.
This study presents the seasonal variations of indoor radon levels in dwellings located in the Ramallah province and East Jerusalem suburbs, Palestine. The measurements were performed during the summer and winter of the year 2006/2007 using CR-39 solid-state-nuclear-track detectors. The total number of investigated buildings is 75 in summer and 81 in winter. A total number of 142 dosemeters are installed in dwellings for each season for a period of almost 100 d. The radon concentration levels in summer varied from 43 to 192 Bq m(-3) for buildings in the Ramallah province and from 30 to 655 Bq m(-3) for East Jerusalem suburbs. In winter, the radon concentration levels are found to vary from 38 to 375 Bq m(-3) in the Ramallah buildings and from 35 to 984 Bq m(-3) in East Jerusalem suburbs. The obtained results for radon concentration levels in most places are found to be within the accepted international levels.  相似文献   

6.
The dose received by people exposed to indoor radon is mainly due to radon progeny. This fact points to the establishment of techniques that access either radon and progeny together, or only radon progeny concentration. In this work a low cost and easy to use methodology is presented to determine the total indoor alpha emission concentration. It is based on passive detection using LR-115 and CR-39 detectors, taking into account the plateout effect. A calibration of LR-115 track density response was done by indoor exposure in controlled environments and dwellings, places where 222Rn and progeny concentration were measured with CR-39. The calibration factor obtained showed great dependence on the ambient condition: (0.69 +/- 0.04) cm for controlled environments and (0.43 +/- 0.03) cm for dwellings.  相似文献   

7.
To estimate annual average concentrations in Korean dwellings and the effective dose to the general public, nationwide surveys on radon were conducted in 1989, 1999-2000 and 2002-2005. The total number of dwellings was about 5600. A survey of thoron and its decay products was also conducted in 2002-2005. In 2008-2009, a new radon survey in 1100 public buildings was conducted. The annual arithmetic (AM) and geometric (GM) means of indoor radon concentration in total were 62.1 ± 66.4 and 49.0 ± 1.9 Bq m(-3), respectively. The annual AM and GM means of indoor thoron concentrations were 40.4 ± 56.0 and 10.7 ± 2.9 Bq m(-3), respectively. The radon and thoron concentrations in detached houses were much higher than those in apartments. The locations of the high radon or thoron houses seem to be correlated with the concentrations of their parent nuclides in surface soil. The mean individual doses of radon and thoron were calculated to be 1.65 and 0.17 mSv y(-1), respectively.  相似文献   

8.
Extensive radon surveys have been carried out in many countries only in dwellings, whereas surveys in workplaces are rather sparse and generally restricted to specific workplaces/activities, e.g. schools, spas and caves. Moreover, radon-prone areas are generally defined on the basis of radon surveys in dwellings, while radon regulations use this concept to introduce specific requirements in workplaces in such areas. This approach does not take into account that work activities and workplace characteristics can significantly affect radon concentration. Therefore, an extensive survey on radon in different workplaces have been carried out in a large region of Italy (Tuscany), in order to evaluate radon distribution in workplaces over the whole territory and to identify activities and workplace characteristics affecting radon concentration. The results of this extensive survey are compared with the results of the survey carried out in dwellings in the same period. The workplaces monitored were randomly selected among the main work activities in the region, including both public and industrial buildings. The survey monitored over 3500 rooms in more than 1200 buildings for two consecutive periods of ~6 months. Radon concentration was measured by means of passive nuclear track detectors.  相似文献   

9.
The feasibility of using small quantities of activated charcoal and a 7.6 cm x 7.6 cm NaI(Tl) well-type detector was investigated for indoor radon measurements. Vials, filled with 10 g of charcoal, were exposed for different indoor radon concentration levels typical of Kuwait dwellings. After exposure, the vials were sealed and kept for 3 h to allow radon to come into radioactive equilibrium with its progenies and were then analysed by gamma-ray spectrometry using the well-type NaI(Tl) detector. The variation of radon absorption by the vials filled with charcoal with exposure time was also studied. A comparative study of the present technique with the standard technique of using 70 g charcoal canisters and flat NaI detector was also performed. After establishing the suitability of the technique, the charcoal vials were then used to investigate the effect of air-ventilation on the concentration levels of the indoor radon. Results show that there is a reduction in the radon concentration level (up to 25%) when the air-ventilation system was switched on. The paper presents the results of the study on the feasibility of combining small amounts of activated charcoal with a well-type NaI(Tl) detector in the measurement of indoor radon concentrations.  相似文献   

10.
Indoor radon levels in 20 dwellings of rural areas at the Kozak-Bergama (Pergamon) granodiorite area in Turkey were measured by the alpha track etch integrated method. These dwellings were monitored for eight successive months. Results show that the radon levels varied widely in the area ranging from 11±1 to 727±11 Bq m(-3) and the geometric mean was found to be 63 Bq m(-3) with a geometric standard deviation of 2 Bq m(-3). A log-normal distribution of the radon concentration was obtained for the studied area. Estimated annual effective doses due to the indoor radon ranged from 0.27 to 18.34 mSv y(-1) with a mean value of 1.95 mSv y(-1), which is lower than the effective dose values 3-10 mSv given as the range of action levels recommended by International Commission on Radiation Protection. All dosimetric calculations were performed based on the guidance of the UNSCEAR 2000 report.  相似文献   

11.
Indoor radon was systematically surveyed in the town of Niksic-the second largest town in Montenegro-which has some of its settlements built above red bauxite deposits. The radon concentrations were measured in 55 homes in 2002/03, in the summer and winter period, using CR-39 etched track detectors. The average annual radon concentrations were found to be lognormally distributed (geometric mean = 66.2 Bq m(-3), geometric standard deviation = 3.0) within the range from 10 to 966 Bq m(-3), with arithmetic mean of 122.7 Bq m(-3) and median of 61.7 Bq m(-3). Although the annual mean radon concentrations above the action level of 400 Bq m(-3) are found only in four dwellings, the indoor radon levels in the town of Niksic are relatively high when compared with the average in the South European countries, as well as with indoor radon levels in other regions in Montenegro.  相似文献   

12.
Inhalation of radon and its daughter products is the major contributor to the total exposure of the population to natural radiation. An indoor radon survey has been carried out in the state of Chhattisgarh (80.26 degrees N to 84.41 degrees N and 17.8 degrees E to 24.1 degrees E), India under the national coordinated radon project of the Department of Atomic Energy. In the frame of this project indoor radon concentration has been measured in 105 dwellings situated in different villages of Chhattisgarh state. Houses were selected for measurements to cover the most common type of houses generally existing in the rural areas. Measurements have been done on quarterly integrating cycle for one full year in each dwelling using radon cup dosemeter employing LR-115, type-II (pelliculable), solid-state nuclear track detectors. The gamma radiation level was also checked in each dwelling using a gamma survey meter. It was found that the annual average indoor radon concentration in these dwellings varies from 9.91 to 87.84 Bq m(-3) with overall mean value of 26.48 Bq m(-3). Gamma level in these rural dwellings varies from 14.84 to 26.56 microR h(-1) with mean value of 18.68 microR h(-1). We observed that the radon concentration is relatively higher in the houses where the floor is bare but relatively lower in those houses where the floor is tiled or cemented.  相似文献   

13.
Indoor radon and its progeny levels were measured during 2005-06 in Bangalore rural district and in Bangalore City by using Solid State Nuclear Track Detector (SSNTD)-based twin cup dosemeters, and the activity of radium present in soils and rocks was measured by using HPGe detector. Fifty dwellings of different types were chosen for the measurement. The dosimeters containing the detector (LR-115 Type II Film) used in each house were fixed 2 m above the floor. After an exposure time of 90 days, films were etched to reveal tracks. From the track density, the concentrations of radon were evaluated. The value of radon concentration in the indoor air near granite quarries varies from 55 to 300 Bq.m(-3) with a median of 155 Bq.m(-3) and its progeny varies from 0.24 to 19.6 mWL with a median of 8.4 mWL. In Bangalore City, the concentration of radon varies from 18.4 to 110 Bq.m(-3) with a median of 45 Bq.m(-3) and its progeny varies from 1.62 to 11.24 mWL with a median of 4.15 mWL. Higher concentrations of radon and its progeny were observed in granite quarries compared with Bangalore City. The main reason for the higher indoor radon and its progeny concentration is due to the mining activity and the types of the bedrock. The concentration of radon mainly depends on the activity of radium present in soils and rocks and the types of building materials used. The activity of radium varies in granitic regions of Bangalore rural district from 42.0 to 163.6 Bq.kg(-1) with a median of 112.8 Bq.kg(-1). The concentrations of indoor radon and its daughter products and equivalent effective dose are discussed.  相似文献   

14.
The indoor radon concentration levels and their regional variationspattern, for two consecutive half-year periods, in a wide rangeof dwellings of some regions of Punjab and Haryana states havebeen studied. The objective was to find the relation betweenthe variations of indoor radon levels with the sub-soil andlocal geology, type of building materials utilised in the dwellingsof the region. Keeping this in view, indoor radon measurementshave been carried out in the dwellings of 30 villages aroundthe Tusham Ring Complex, Bhiwani district, Haryana, known tobe composed of acidic volcanics and associated granites, alongwith 11 villages of Amritsar District, Punjab. The indoor radonconcentration in the dwellings around Tusham (Haryana) was foundto vary from 120 ± 95 to 915 ± 233 Bq m–3,whereas radon levels varied from 60 ± 37 to 235 ±96 Bq m–3 for the dwellings studied in Punjab. We believethat local geology including embedded granitic rocks, and sub-soil,as well as building materials having higher radioactive content,is the major contributor for the higher indoor radon levelsobserved particularly in the dwelling around Tusham Ring complex,where some dwellings are showing higher radon concentrationsthan the ICRP recommendations. The environmental samples fromsome areas of Punjab state and around the Tusham Ring Complexof Haryana state have also been analysed for radon exhalationstudies. Higher values for radon exhalation rates have beenobserved for the Tusham's soil/rock specimens, as compared withsoil samples of the Amritsar region of Punjab.  相似文献   

15.
Inhalation of radon ((222)Rn) and daughter products are a major source of natural radiation exposure. Keeping this in view, seasonal indoor radon measurement studies have been carried out in 68 dwellings belonging to 17 residential areas in Alexandria city, Egypt. LR-115 Type 2 films were exposed for four seasons of 3 months each covering a period of 1 y for the measurement of indoor radon levels. Assuming an indoor occupancy factor of 0.8 and a factor of 0.4 for the equilibrium factor of radon indoors, it was found that the estimated annual average indoor radon concentration in the houses surveyed ranged from 45 ± 8 to 90 ± 13 Bq m(-3) with an overall average value of 65 ± 10 Bq m(-3). The observed annual average values are greater than the world average of 40 Bq m(-3). Seasonal variation of indoor radon shows that maximum radon concentrations were observed in the winter season, whereas minimum levels were observed in the summer season. The season/annual ratios for different type of dwellings varied from 1.54 to 2.50. The mean annual estimated effective dose received by the residents of the studied area was estimated to be 1.10 mSv. The annual estimated effective dose is less than the recommended action level (3-10 mSv y(-1)).  相似文献   

16.
Indoor radon activity level and radon effective dose (ED) rate have been carried out in the rural dwellings of Ezine (Canakkale) during the summer season using Radosys-2000, a complete set suitable to radon concentration measurements with CR-39 plastic alpha track detectors. The range of radon concentration varied between 9 and 300 Bq m(-3), with an average of 67.9 (39.9 SD) Bq m(-3). Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, it has been found that the 222Rn ED rate in the dwellings studied ranges from 0.4 to 5.2 mSv y(-1), with an average value of 1.7 (1.0) mSv y(-1). There is a possibility that low radon concentrations exist indoors during the summer season in the study area because of relatively high ventilation rates in the dwellings. A winter survey will be needed for future estimation of the annual ED.  相似文献   

17.
Long-term (circa 3 months) simultaneous measurements of indoor concentrations of thoron gas, airborne thoron progeny and radon were made using passive alpha track detectors in 205 dwellings in Ireland during the period 2007-09. Thoron progeny concentrations were measured using passive deposition monitors designed at the National Institute of Radiological Sciences (NIRS), Japan, whereas thoron gas concentrations were measured using Raduet detectors (Radosys, Budapest). Radon concentrations were measured in these dwellings by means of NRPB/SSI type alpha track radon detectors as normally used by the Radiological Protection Institute of Ireland (RPII). The concentration of thoron gas ranged from <1 to 174 Bq m(-3) with an arithmetic mean (AM) of 22 Bq m(-3). The concentration of radon gas ranged from 4 to 767 Bq m(-3) with an AM of 75 Bq m(-3). For radon, the estimated annual doses were 0.1 (min), 19.2 (max) and 1.9 (AM) mSv y(-1). The concentration of thoron progeny ranged from <0.1 to 3.8 Bq m(-3) [equilibrium equivalent thoron concentration (EETC)] with an AM of 0.47 Bq m(-3) (EETC). The corresponding estimated annual doses were 2.9 (max) and 0.35 (mean) mSv y(-1). In 14 or 7% of the dwellings, the estimated doses from thoron progeny exceeded those from radon.  相似文献   

18.
Simultaneous indoor radon, radon-thoron progeny and high-resolution in situ gamma spectrometry measurements, with portable high-purity Ge detector were performed in 26 dwellings of Thessaloniki, the second largest town of Greece, during March 2003-January 2005. The radon gas was measured with an AlphaGUARD ionisation chamber (in each of the 26 dwellings) every 10 min, for a time period between 7 and 10 d. Most of the values of radon gas concentration are between 20 and 30 Bq m(-3), with an arithmetic mean of 34 Bq m(-3). The maximum measured value of radon gas concentration is 516 Bq m(-3). The comparison between the radon gas measurements, performed with AlphaGUARD and short-term electret ionisation chamber, shows very good agreement, taking into account the relative short time period of the measurement and the relative low radon gas concentration. Radon and thoron progeny were measured with a SILENA (model 4s) instrument. From the radon and radon progeny measurements, the equilibrium factor F could be deduced. Most of the measurements of the equilibrium factor are within the range 0.4-0.5. The mean value of the equilibrium factor F is 0.49 +/- 0.10, i.e. close to the typical value of 0.4 adopted by UNSCEAR. The mean equilibrium equivalent thoron concentration measured in the 26 dwellings is EEC(thoron) = 1.38 +/- 0.79 Bq m(-3). The mean equilibrium equivalent thoron to radon ratio concentration, measured in the 26 dwellings, is 0.1 +/- 0.06. The mean total absorbed dose rate in air, owing to gamma radiation, is 58 +/- 12 nGy h(-1). The contribution of the different radionuclides to the total indoor gamma dose rate in air is 38% due to 40K, 36% due to thorium series and 26% due to uranium series. The annual effective dose, due to the different source terms (radon, thoron and external gamma radiation), is 1.05, 0.39 and 0.28 mSv, respectively.  相似文献   

19.
A survey was undertaken of radon levels in 1013 dwellings in Sussex, UK. A number of dwellings were identified with high radon levels in an area previously considered to offer low radon risk from geological sources. Multiple regression was used to determine the relative influence of the various geographical and building-related factors on indoor radon levels. The radon hazard, independent of building-related effects, was determined for each surveyed location by standardising radon measurements to a 'model' dwelling. These were entered into a geographic information system and related to surface geology. The highest radon levels were found to be associated with the youngest Chalk formations, Tertiary deposits and Clay-with-flints Quaternary deposits in the area. Radon potentials were also determined for the area which can be used to estimate radon risk and assist in environmental planning and development control.  相似文献   

20.
Makrofol Solid State Nuclear Track Detectors were used to study the 222Radon concentration in dwellings of the Kars province in Turkey. Radon measurements were done for 3 months in 87 houses, selected as uniformly distributed in the area as possible. All values were seasonally corrected. In order to define the seasonal correction factors, the readings were taken in 12 homes for a 12-month period. A 1:100.000 scale geologic map of the region, prepared and published by the Institute of Mineral Research and Exploration (Ankara, Turkey), was used to present the radon results. Digitising, processing and integrating of the data were performed by using ArcView GIS. The results of the radon measurements in the study area range from 20 to 600 Bq/m3, with 114 Bq/m3 as average value. The results showed that the number of lung cancer deaths attributable to indoor radon exposure was estimated to be approximately 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号