首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel magnetic bioactive glass-ceramics (M GC) were synthesized by doping Mg ferrite to wollastonite–fluorapatite-containing glass-ceramics. The phase composition was investigated by XRD. The magnetic property was measured by VSM. The in vitro bioactivity was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteoblast-like ROS17/2.8 cells with M GC. The results showed that CaSiO3, Ca2MgSi2O7, Ca5(PO4)3F and Fe2MgO4 were the main phases of M GC. Under a magnetic field of 10,000 Oe, the saturation magnetization and coercive force of M GC were 7.2 emu/g and 175 Oe, respectively. After soaking in SBF for 14 days, a lot of hydroxyapatite containing CO32? was observed on the surface of M GC. The experiment of co-culturing cells with M GC showed that osteoblast-like ROS17/2.8 cells could attach well on the surface of M GC. The material has the potential to be used as thermoseeds for hyperthermia.  相似文献   

2.
The nickel cobalt ferrite (Co0.5Zn0.5Fe2O4) nanopowders were synthesized by a sol–gel method and a hydrothermal method. Polyethylene glycol (PEG-4000) and carboxymethyl cellulose (CMC) were used as the templating agents for controlling the anisotropy and the microstructure of the Co0.5Zn0.5Fe2O4 nanopowders. The microstructure and magnetic property of the synthesized powders were comparatively studied. The results indicated that the synthesis technique and the template had remarkable dependence on the microstructure and the magnetic property of the nanopowders. The powder synthesized by the sol–gel method without any template had a maximum saturation magnetization of 73.6 emu g−1 closing to the value of the bulk material (80 emu g−1), while the PEG-4000 and CMC decreased the magnetization to 54.0 and 60.9 emu g−1. The three powders showed almost same coercivity (314–343 Oe). However, the PEG-4000 and CMC in the hydrothermal process obviously decreased and increased the coercivity respectively from 1,464 Oe to 5 Oe and 4,304 Oe but had small effect of the magnetization (55.5–59.0 emu g−1).  相似文献   

3.
Three-dimensional glass ceramic scaffolds from the system CaO–P2O5–Na2O–ZnO have been prepared by coating polyurethane foams with sol–gel derived glass slurry. Main phase catena hexaphosphate (Ca4P6O19), minor phases calcium pyrophosphate (β-Ca2P2O7) and calcium metaphosphate (β-Ca(PO3)2) were detected in the prepared glass ceramics. In order to assess the potential use in hard tissue engineering, the dissolution and precipitation behavior of the glass ceramics was investigated in vitro after soaking in simulated body fluid (SBF) for different periods of time, and the bioactivity and biocompatibility studies were conducted using mouse MC3T3-E1. Ca4P6O19 phase showed a good chemical durability in SBF solution over the period time of soaking. However, there were small quantities of apatite-like deposits formed on the surfaces after soaking 28 days, exhibiting a poor ability of inducing calcification in SBF. In vitro cell culture, a high degree of cell adhesion and spreading was achieved and large number of mineralized deposits composed of Ca, P and Zn were detected in these porous scaffolds. These results confirmed the biocompatibility and bioactivity of the glass ceramics and the positive effects on mouse MC3T3-E1 cell behavior although no continuous apatite layer was formed on scaffold surfaces after soaking in SBF, and also demonstrated that Zn doped this glass ceramics could strongly stimulate the formation of mineralized deposits in vitro culture of MC3T3-E1 cells.  相似文献   

4.
Acicular FeC2O4 · 2H2O was precipitated from glycerol and starch media. Thermal decomposition of this oxalate in dry and moist nitrogen yielded primarily FeO and Fe3O4 respectively. Characterization was attempted through DTA, TG, x-ray diffraction, TEM and magnetization studies. It was found that the oxalate can be completely decomposed to Fe3O4 in moist nitrogen (PH 2O ∼ 35 torr) at 775 K and then oxidised by dry air to acicular γ-Fe2O3 at 575 K. The resulting material has saturation magnetization (∼ 70 emu/g), coercive field (∼ 300 Oe) and squareness ratio (∼ 0·60–0·65), which values art comparable with those of the commercial samples.  相似文献   

5.
The structure and magnetic behaviour of 34SiO2–(45 − x) CaO–16P2O5–4.5 MgO–0.5 CaF2 − x Fe2O3 (where x = 5, 10, 15, 20 wt.%) glasses have been investigated. Ferrimagnetic glass-ceramics are prepared by melt quench followed by controlled crystallization. The surface modification and dissolution behaviour of these glass-ceramics in simulated body fluid (SBF) have also been studied. Phase formation and magnetic behaviour have been studied using XRD and SQUID magnetometer. The room temperature Mössbauer study has been done to monitor the local environment around Fe cations and valence state of Fe ions. X-ray photoelectron spectroscopy (XPS) was used to study the surface modification in glass-ceramics when immersed in simulated body fluid. Formation of bioactive layer in SBF has been ascertained using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SBF solutions were analyzed using an absorption spectrophotometer. The magnetic measurements indicated that all these glasses possess paramagnetic character and the [Fe2+/Fe3+] ions ratio depends on the composition of glass and varied with Fe2O3 concentration in glass matrix. In glass-ceramics saturation magnetization increases with increase in amount of Fe2O3. The nanostructure of hematite and magnetite is formed in the glass-ceramics with 15 and 20 wt.% Fe2O3, which is responsible for the magnetic property of these glass-ceramics. Introduction of Fe2O3 induces several modifications at the glass-ceramics surface when immersed in SBF solution and thereby affecting the surface dissolution and the formation of the bioactive layer.  相似文献   

6.
Mesoporous bioactive glasses (MBGs) of the CaO–SiO2–P2O5 system containing relatively high P2O5 contents (10–30 mol%) were prepared from a sol–gel. An evaporation-induced self-assembly (EISA) technique was used with poly(ethylene oxide)-block–poly(propylene oxide)-block–poly(ethylene oxide) (EO20–PO70–EO20, P123) acting as a template. The structural, morphological and textural properties of MBGs were investigated by small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and a N2 sorption/desorption technique. SAXRD and TEM results display the reduced long-range ordering of mesopores with increasing P2O5 content. N2 sorption/desorption analysis shows that all three samples exhibit a type IV isotherm with type H1 hysteresis loops, characteristic of independent cylindrical slim pore channels and this material has a Barret–Joyner–Halenda (BJH) model pore size of ~4 nm and BET specific surface area ~430 m2/g. NMR results indicate a more condensed framework for samples with 30 mol% P2O5 than samples with 10 mol% P2O5. For in vitro bioactivity tests where samples were soaked in simulated body fluid (SBF), samples with 30 mol% P2O5 showed higher crystallinity than those with lower P2O5 contents Silicon concentration increased in SBF solution during the soaking period, which indicates MBGs can be degradable in SBF solution.  相似文献   

7.
This research work aims to propose highly porous polymer/bioactive glass composites as potential scaffolds for hard-tissue and soft-tissue engineering. The scaffolds were prepared by impregnating an open-cells polyurethane sponge with melt-derived particles of a bioactive glass belonging to the SiO2–P2O5–CaO–MgO–Na2O–K2O system (CEL2). Both the starting materials and the composite scaffolds were investigated from a morphological and structural viewpoint by X-ray diffraction analysis and scanning electron microscopy. Tensile mechanical tests, carried out according to international ISO and ASTM standards, were performed by using properly tailored specimens. In vitro tests by soaking the scaffolds in simulated body fluid (SBF) were also carried out to assess the bioactivity of the porous composites. It was found that the composite scaffolds were highly bioactive as after 7 days of soaking in SBF a HA layer grew on their surface. The obtained polyurethane/CEL2 composite scaffolds are promising candidates for tissue engineering applications.  相似文献   

8.
Chemically beneficiated high silica/alumina iron ore rejects (27–76% Fe2O3) were used to synthesize iron oxides of purity 96–98% with SiO2/Al2O3 ratio reduced to 0.03. The major impurities on chemical beneficiations were Al, Si, and Mn in the range 2–3%. A 99.73% purity Fe2O3 was also prepared by solvent extraction method using methyl isobutyl ketone (MIBK) from the acid extracts of the ore rejects. The magnesium ferrite, MgFe2O4, prepared from these synthetic iron oxides showed high resistivity of ∼ 108 ohm cm. All ferrites showed saturation magnetization, 4πMs, in the narrow range of 900–1200 Gauss and the Curie temperature,T, cof all these fell within a small limit of 670 ± 30 K. All ferrites had low dielectric constants (ε′), 12–15, and low dielectric loss, tan δ, which decreased with the increase in frequency indicating a normal dielectric dispersion found in ferrites. The presence of insignificant amount of polarizable Fe2+ ions can be attributed to their high resistances and low dielectric constants. Impurities inherent in the samples had no marked influence on the electrical properties of the ferrites prepared from the iron ore rejects, suggesting the possibility of formation of ferrite of constant composition, MgFe2O4, of low magnetic and dielectric losses at lower temperatures of 1000°C by ceramic technique.  相似文献   

9.
We study the structure and composition of scales formed during the contact of Fe–13Cr–2Motype ferritic steels hardened with oxides TiO2 and Y2O3 with oxygen-containing (10−3 mass% O) lead melt at 550°C for 1000 h. It is established that a Fe3 O4 – Fe (Fe1 − x , Cr x )2 O4 two-layer scale forms. Its upper layer (Fe3 O4) grows in the direction of the melt, and the internal layer (Fe (Fe1 – x , Cr x )2 O4) grows in the direction to the matrix. Oxide particles favor an increase in the porosity of the internal sublayer of the scale. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 44, No. 5, pp. 38 – 44, September–October, 2008.  相似文献   

10.
The purpose of this research was to synthesize amino modified Fe3O4/SiO2 nanoshells for biomedical applications. Magnetic iron-oxide nanoparticles (NPs) were prepared via co-precipitation. The NPs were then modified with a thin layer of amorphous silica. The particle surface was then terminated with amine groups. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g? 1 for uncoated Fe3O4 NPs and it increased to about 208 m2 g?1 for 3-aminopropyltriethoxysilane (APTS) coated Fe3O4/SiO2 NPs. The total thickness and the structure of core-shell was measured and studied by transmission electron microscopy (TEM). For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of (80–100) emu g?1 and coercivity of (80–120) Oe for particles between (35–96) nm, respectively. The Fe3O4/SiO2 NPs with 50 nm as particle size, demonstrated a magnetization value of 30 emu g?1. The stable magnetic fluid contained well-dispersed Fe3O4/SiO2/APTS nanoshells which indicated monodispersity and fast magnetic response.  相似文献   

11.
Magnetic relaxation caused by the creep of Josephson intergrain vortices is studied in Bi2Sr2Ca2Cu3O10 high-Tc superconductor in the temperature interval 1.8–30 K for applied magnetic fields between 15 and 25 Oe. It is found that the magnetic moment M logarithmically decays with time t. At high enough temperatures the normalized logarithmic decay rate S=−(1/MJ0)(dMJ/dlnt) linearly increases with temperature, while at T<T0(H), a temperature-independent relaxation rate S≈1.7·10−3 is found, manifesting the occurrence of quantum creep of the Josephson vortices. The “crossover” temperature T0 from the quantum tunneling to the classical thermally activated regime of the vortex motion rapidly decreases from T0=10 K to T0<2 K when the field is increased from H=15 Oe to H=25 Oe. No thermal enhancement of the tunneling rate was found in contrast to the quantum creep behavior of Abrikosov intragrain vortices measured in the same sample (Physica C 222 (1994) 149).  相似文献   

12.
Fe x Ni1−x /Ni y Fe3−y O4 (0 < x, y < 1) nanocomposites were synthesized by the hydrothermal method in a rotating autoclave. The structure and magnetic properties of the composites have been investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The possible reaction mechanism was investigated in detail. These nanocomposites showed high special saturation magnetization Ms and relatively low coercive force Hc, which are 78.2 emu/g and 78.3 Oe, respectively.  相似文献   

13.
A total of 5 mol% WO3-doped (1−x)(Ni0.8Zn0.1Cu0.1)Fe2O4/xPb(Ni1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3–PbTiO3 ((1−x)NZCF/xPNN-PZN-PT) magnetoelectric particulate ceramic composites were prepared by conventional solid-state reaction method via low-temperature sintering process. X-ray diffraction (XRD) measurement and scanning electron microscopy (SEM) observation indicate that piezoelectric phase and ferrite phase coexist in the sintered particulate ceramic composites. Dielectric property of the (1−x)NZCF/x0.53PNN–0.02PZN–0.05Pb(Ni1/2W1/2)O3–0.40PT ((1−x)NZCF/xPNN-PZN-PNW-PT, nominal composition) composites is improved greatly as compared to that of the undoped (1−x)NZCF/xPNN-PZN-PT composites. The WO3-doped (1−x)NZCF/xPNN-PZN-PT composites exhibit typical P–E hysteresis loops at room temperature accompanied by the decrease of saturation polarization (P s) and remnant polarization (P r). At the same time, piezoelectric property of the composites deteriorates greatly with the increase of ferrite content. The (1−x)NZCF/xPNN-PZN-PNW-PT composites can be electrically and magnetically poled and exhibit apparent magnetoelectric (ME) effect. A maximum ME voltage coefficient of 13.1 mV/(cm Oe) is obtained in the 0.1NZCF/0.9PNN-PZN-PNW-PT composite at 400 Oe d.c. magnetic bias field superimposed 1 kHz a.c. magnetic field with 5 Oe amplitude. The addition of WO3 in the piezoelectric phase decreases sintering temperature greatly from 1180 °C to 950 °C and decreases dielectric loss sharply of the composites, thus the ME voltage coefficient increases. Such ceramic processing is valuable for the preparation of magnetoelectric particulate ceramic composites with excellent ME effect.  相似文献   

14.
Mg-based hydrogen-storage materials with the compositions of Mg–10 wt%oxide (oxide = Cr2O3, Fe2O3, MnO, and SiO2) and Mg–xFe2O3yNi were prepared by reactive mechanical grinding (RMG). Taking into consideration the hydriding and dehydriding rates and the cost of materials, Fe2O3 prepared by spray conversion is an appropriate oxide additive to Mg. Mg–5 wt%Fe2O3–15 wt%Ni exhibited the best hydrogen-storage performance among the Mg–xFe2O3yNi hydrogen materials. It stored 5.47 wt%H under 1.2 MPa H2 for 60 min and released 5.42 wt%H under 0.1 MPa H2 for 15 min at 593 K. The addition of Fe2O3 and Ni to Mg by the RMG shortens the diffusion distances through the reduction of the particle size of Mg. These additives are also considered to facilitate nucleation by creating many defects on the surface and in the interior of Mg. The added Fe2O3 and Ni themselves may also act as active sites for the nucleation. Ni forms the Mg2Ni phase by a reaction with Mg, and Fe appears from the reduction of Fe2O3 by hydrogen after hydriding–dehydriding cycling.  相似文献   

15.
The ferromagnetic Al2O3-based cermets with different ratios of Co and Co–50Ni alloys were successfully prepared by combustion synthesis in thermal explosion (TE) mode. The reaction process, microstructure, and magnetic property of cermets were investigated. The relative density of cermets can be over 95% via uniaxial loading at the time of ignition when the cermets are hot and ductile. In Al2O3–Co cermets, β-Co and α-Co co-exist at room temperature with average size of less than 10 μm and disperse homogeneously in the matrix, while in Al2O3–(Co–50Ni) cermets, the network-like Co–50Ni alloy can infiltrate into the boundary gaps of Al2O3 particles. The ferromagnetic Co and Co–50Ni alloys are responsible of the magnetic properties of Al2O3-based cermets. The saturation magnetization strongly depends on the magnetic characteristics and ratios of ferromagnetic phases. Al2O3–(Co–50Ni) cermets have soft magnetic properties with high magnetic susceptibility and low coercive force.  相似文献   

16.
Glasses from xFe2O3 · (100 − x)[P2O5 · TeO2] system, with 0 ≤ x ≤ 50 mol%, were investigated by X-ray diffraction, FT-IR and EPR spectroscopies. The XRD patterns show a vitreous state of studied samples for x ≤ 35 mol% Fe2O3. The FT-IR spectrum of the P2O5 · TeO2 glass matrix reveals a structure formed from PO4, TeO4 and TeO3 units. The addition and the increasing of Fe2O3 content modify progressively the structure of the glass matrix. The local structure in the investigated glasses was revealed by means of EPR using Fe3+ (3d5; 6S5/2) ions as paramagnetic probes. The EPR spectra present two resonance absorption lines characteristic to Fe3+ ions centred at geff ≈ 2.0, for 0.5 ≤ x ≤ 35 mol% and geff ≈ 4.3, for 0.5 ≤ x ≤ 5 mol%. The variation of the EPR parameters, the intensity and line-width of these absorption lines, with iron ions composition has been followed.  相似文献   

17.
Al-doped Fe3O4 nanoparticles were synthesized for the first time via the Composite-Hydroxide-Mediated (CHM) method from Fe3O4 and Al2O3 without using any capping agent. The synthesis technique was one-step and cost effective. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersion spectroscopy (EDS). Samples with a tunable size of 500–1500 nm, 200–800 nm, and 100–700 nm could be obtained by adjusting the reaction time and temperature. Magnetic property of the as-synthesized Al-doped Fe3O4 nanoparticles was investigated. Magnetic hysteresis loops measured in the field range of −10 kOe<H<10 kOe, indicated the ferromagnetic behavior with coercivity (H c) of 470 and 110 Oe and remanence magnetization (M r) of 13 and 6.4 emu/g at the temperature of 5 and 300 K, respectively. The saturation intensity (M s) was 46.1 emu/g at 5 K, while it was about 43.6 emu/g at 300 K.  相似文献   

18.
Synthesis and thermal decomposition characteristics of acetate-modified citrate precursor have been investigated. The intermediates of thermal decomposition exhibit enhanced reactivity. Quantitative estimation of the intermediate phases above 1125 K has been carried out and a directed reaction between Y2Cu2O5 and BaCuO2 phases is postulated for the formation of pure 1–2–3 phase. Isothermal calcination of the precursor at 1175 K for 9 h is sufficient for the complete conversion of the intermediate phases to SmBa2Cu3O7−δ. The particles thus obtained are nearly spherical and monosized to give a BET surface area of 3 m2/g. The oxygenated powder showsT c onset at 97 K for magnetic susceptibility and a narrow hysteresis for magnetization withH c1 andJ c values of 105Oe and 6×104 A/cm2 respectively at 77 K. EPR and EDAX techniques confirm the phase purity. Electron diffraction studies confirm XRD results. For oxygenated powder the excess charge (p +) on square planar copper site [Cu-O] p * is estimated to be 0.28.  相似文献   

19.
Bifunctional magnetic-luminescent dansylated Fe3O4@SiO2 (Fe3O4@SiO2-DNS) nanoparticles were fabricated by the nucleophilic substitution of dansyl chloride with primary amines of aminosilane-modified Fe3O4@SiO2 core–shell nanostructures. The morphology and properties of the resultant Fe3O4@SiO2-DNS nanoparticles were investigated by transmission electron microscopy, FT–IR spectra, UV–vis spectra, photoluminescence spectra, and vibrating sample magnetometry. The Fe3O4@SiO2-DNS nanocomposites exhibit superparamagnetic behavior at room temperature, and can emit strong green light under the excitation of UV light. They show very low cytotoxicity against HeLa cells and negligible hemolysis activity. The T 2 relaxivity of Fe3O4@SiO2-DNS in water was determined to be 114.6 Fe mM−1 s−1. Magnetic resonance (MR) imaging analysis coupled with confocal microscopy shows that Fe3O4@SiO2-DNS can be uptaken by the cancer cells effectively. All these positive attributes make Fe3O4@SiO2-DNS a promising candidate for both MR and fluorescent imaging applications.  相似文献   

20.
A novel magnetically separable composite photocatalyst—〈La-doped TiO2〉/CoFe2O4 nanofiber—was prepared by a two-spinneret electrospinning method combined with sol–gel method. The nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometer (VSM). It was shown that the diameter of 〈1.0% La-doped TiO2〉/CoFe2O4 nanofibers was 100–150 nm after calcination at 600 °C for 2 h. EDS and XPS measurements on the photocatalytic material indicated the existence of La3+ oxidation states in 〈1.0% La-doped TiO2〉/CoFe2O4 nanofibers. The photocatalytic activity of as-prepared nanofibers was evaluated using methylene blue (MB) as a model organic compound and the result revealed that the 〈1.0% La-doped TiO2〉/CoFe2O4 nanofibers have an efficient photocatalytic property, and the degradation rate of MB could reach 93% in 150 min. Moreover, the magnetic property of the nanofibers has also been characterized, and the nanofibers show a good magnetic response, which indicates that the possibility of the magnetic nanofibers’ potential recycling property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号