首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 450 毫秒
1.
The influence of the activation temperature on the pore structure of granular activated carbons prepared from rockrose (Cistus ladaniferus L.), extracted previously into petroleum ether, is comparatively studied. The preparation was carried out by pyrolysis of a char in nitrogen and its subsequent activation by carbon dioxide and steam (flow of water controlled to generate the same mol number per minute of water as well as carbon dioxide/nitrogen) at 700-950°C to 40% burn-off. The techniques applied to study the pore structure were: pycnometry (mercury, helium), adsorption (carbon dioxide, 298 K; nitrogen, 77 K), mercury porosimetry and scanning electron microscopy. The preparation by steam activation, especially at 700°C, yields activated carbons showing a total pore volume larger than those prepared by carbon dioxide activation. The pore structures present the greatest differences when the activations are carried out between 700 and 850°C and closer at higher temperatures. At high temperatures, the decrease of differences in pore development caused by carbon dioxide or steam is attributed to an external burn-off. The micropore structure of each activated carbon is mainly formed by wide micropores. At the lowest activation temperatures, especially at 700°C, steam develops the mesoporosity much more than carbon dioxide. At 950°C, a similar reduction of pore volume in the macropore range occurs.  相似文献   

2.
Activated carbons were prepared from eucalyptus wood chars and the results of CO2, CO2-O2 and steam activation were compared. The carbonization step gave rise to a narrow micropore structure and a highly developed macroporosity which increased slightly upon CO2 activation and significantly upon steam activation. This last process led also to a widening of micropore size distribution and developed the mesoporosity more than CO2 activation did. The presence of O2 accompanying CO2 in the activating gas increased the micro- and macroporosity of the carbons. No net destruction of microporosity was observed even at high burnoff levels and with as much as 5 vol. % O2 in the activating gas.  相似文献   

3.
Several series of activated carbons were prepared from olive stones by means of carbonization followed by activation with carbon dioxide, water steam and a mixture of them, under different experimental conditions. The changes in porosity of the original char during activation were studied by adsorption of N2 at 77 K, CO2 at 273 K and Hg porosimetry. The study was carried out covering a wide range of burn-off (19–83%) using activation times of 20–120 min, and temperatures between 650 and 950 °C. It is shown quantitatively how the individual factors influence the development of microporosity. It was found that in general terms, increasing activation produces a continuous increase in the volume of micropores and mesopores. However, this development occurs in a different proportion whether CO2 or steam are used: while CO2 produces narrow micropores on the carbons and widens them as time is increased, steam yields pores of all the sizes from the early stages of the process. The simultaneous use of these two activating agents resulted positive at times higher than 1 h, since it yielded carbons with higher volumes of pores.  相似文献   

4.
A.J. Romero-Anaya 《Carbon》2010,48(9):2625-7239
The activation process of a spherical activated carbon (SAC) from Kureha Carbon was analysed and the behaviour of these materials to adsorb low concentration volatile organic compounds was studied. Two series of activated carbons were prepared using CO2 or steam as activating atmospheres at 880 and 840 °C, respectively. Activation times between 45 min and 24 h were selected, leading to burn-offs between 21 and 60%. The results show, for similar burn-off percentages, that the porosity development is similar for the two activating gases at moderate burn-off percentages, and larger for CO2 than for steam at high burn-off percentages. For similar burn-offs, steam leads to SACs with slightly larger bed densities than CO2. In general, a low and similar increase in the total surface oxygen groups’ content is noted after activation with both activating agents. Toluene adsorption capacities as large as 46 g toluene/100 g SAC can be achieved with some of these spherical activated carbons in a continuous flow-through SAC bed, when influent air-phase toluene was 200 ppmv. Considering that these SACs have quite high bed densities, their toluene adsorption capacities per unit of volume reach remarkably high values.  相似文献   

5.
D. Gondy  P. Ehrburger 《Carbon》1997,35(12):1745-1751
Isotropic pitch-based carbon fibres are activated by carbon dioxide and by steam at a temperature ranging from 850 to 1000 °C. In both cases, a significant increase in micropore volume, as measured by physical adsorption of N2 and CO2, is found. Fibre diameter steadily decreases during gasification by steam. In contrast, an intermediate diameter increase is observed during activation by CO2. The interval of burn-off corresponding to fibre swelling depends on the gasification temperature. Phenolic resin-based fibres do not show swelling which indicates that it is specific to pitch-based fibres activated by CO2. Oxygen is taken up during swelling on the incompletely stabilized part of the isotropic pitch-based carbon fibres. The origin of swelling and its effect on microporosity are discussed in relationship to fibre stabilization during activation.  相似文献   

6.
A series of experiments were conducted to produce carbon molecular sieves (CMS) through carbon deposition from a locally available palm shell of Tenera type for separating gaseous mixtures. The process involves three stages; carbonization, physical activation with steam, and carbon deposition by using benzene cracking technique. Carbonization of the dried palm shells was occurred at 900°C for duration of 1 h followed by steam activation at 830°C for 30–420 min to obtain activated carbons with different degree of burn-offs. The highest micropore volume of activated carbon obtained at 53.2% burn-off was used as a precursor for CMS production. Subsequent carbon deposition of the activated sample at temperature range from 600 to 900°C for 30 min has resulted in a series of CMSs with different selectivities of CO2/CH4 and O2/N2. The kinetic adsorption isotherm of CO2, CH4, O2 and N2 at room temperature also presented in this work.  相似文献   

7.
Two brown coals, xylitic and earthy, carbonized at 1173 K were activated with water vapour, carbon dioxide and oxygen, each producing a different distribution of porosity. In the xylitic coke, activated in the range of burn-offs from 1 to 70%, the action of water vapour results in the development of pores of all dimensions. At the highest burn-off the product has an effective surface area of 920 m2 g?1 and a total sorptive pore volume of 0.83 cm3 g?1, 33% of which is in micropores. Carbon dioxide creates, from the xylitic coke at the burn-off of 70%, a highly microporous adsorbent with about the same surface area (890 m2 g?1) as the corresponding water-vapour activated product. The pore volume of the carbon dioxide sample is lower (0.49 cm3 g?1) but these contain 63% of micropores, which amounts to a contribution of 92% of these pores to the effective total surface area. The activation of the xylitic coke with oxygen leads to a high development of porosity at low burn-offs, but becomes ineffective on continuation of the process to medium and high burn-offs. This is thought to be due to a blocking of the entrances of the micropores by surface oxygen complexes formed on the surface of the coke. Oxygen gives, at a high burn-off, a product with the lowest total adsorptive volume (0.45 cm3 g?1) and surface area (650 m2 g?1). All the activated products obtained from the xylitic coke can be regarded, when effective surface areas are considered, as microporous adsorbents. With the earthy coke a total adsorptive pore volume (consisting mainly of wide mesopores) is developed which is higher than with the corresponding xylitic coke, but this result is difficult to reproduce, because the earthy coke samples are easily influenced by temperature in the process of activation, especially that by oxygen.  相似文献   

8.
Variation of the pore structure of coal chars during gasification   总被引:2,自引:0,他引:2  
Bo Feng 《Carbon》2003,41(3):507-523
The variation of the pore structure of several coal chars during gasification in air and carbon dioxide was studied by argon adsorption at 87 K and CO2 adsorption at 273 K. It is found that the surface area and volume of the small pores (<10 Å) do not change with carbon conversion when the coal char is gasified in air, while those of the larger pores (10-20 Å, 20-50 Å, 50-2500 Å) increase with increase of carbon conversion. However in CO2 gasification, all the pores in different size ranges increase in surface area and volume with increase of carbon conversion. Simultaneously, the reaction rate normalized by the surface area of the pores >10 Å for air gasification is constant over a wide range of conversion (>20%), while for CO2 gasification similar results are obtained using the total surface area. However, in the early stages of gasification (<20%) the normalized reaction rate is much higher than that in the later stage of gasification, due to existence of more inaccessible pores in the beginning of gasification. The inaccessibility of the micropores to adsorption at low and ambient temperatures is confirmed by the measurement of the helium density of the coal chars. The random pore model can fit the experimental data well and the fitted structural parameters match those obtained by physical gas adsorption for coal chars without closed pores.  相似文献   

9.
A mathematical model has been applied to N2/77 K and CO2/273 K adsorption isotherms for a series of activated carbons prepared by carbonising olive stones in N2 and then activating them in CO2 to six different levels of burn-off in the range 8–80%. Narrow and wide micropore volumes of activated carbons were calculated from the Dubinin-Radushkevich and Dubinin-Astakhov equations considering one, two and three micropore size distributions in each sample, and allowing a variation of the micropore volume and characteristic energy of each distribution with the burn-off. The flexible simplex method was applied to obtain the parameters of each distribution in the mathematical model. Generally, it was found that increasing the number of micropore size distributions above two did not significantly improve fits. Each isotherm was fitted using six parameters at most. However, various constraints were imposed, and the parameters were estimated from each isotherm using non-linear, least-squares regression analysis. The results obtained confirm the valuable use of CO2/273 K adsorption to quantify the narrow microporosity of activated carbons. Differences between N2/77 K and CO2/273 K adsorption in microporous activated carbons were due to the wide microporosity. An agreement between micropore volumes obtained from CO2/273 K adsorption and that corresponding to one of the two distributions of micropores obtained from N2/77 K adsorption was obtained. The Dubinin-Radushkevich equation was more successful than the Dubinin-Astakhov equation in the quantification of the microporosity with N2/77 K and CO2/273 K. On the other hand, the exponent n of the Dubinin-Astakhov equation was better correlated with the burn-off of the carbons than with the parameter B.  相似文献   

10.
Isothermal treatments of the polyaramid fiber, [poly(p-phenylene terephthalamide)] (PPTA) in an inert atmosphere below its decomposition temperature are known to induce an important increase in char yield and modify the chemical composition and some other properties of the resulting chars. The objective of this work was to study the effect of this isothermal stage on the porous texture of chars and activated carbon fibers (ACFs) produced from PPTA. To this end, chars and ACFs were prepared by PPTA pyrolysis to 850 °C followed by CO2 activation at 800 °C to various burn-offs (BOs), introducing or not an intermediate isothermal pre-treatment under the conditions (500 °C, 200 min) known to lead to a maximum increase in char yield. The porosity characteristics of the resulting chars and ACFs were comparatively investigated by adsorption of CO2 (0 °C), and N2 (−196 °C). The isothermal stage led to a char with enhanced micropore volume and wider micropores. The ACFs prepared from this char exhibited larger amounts of wide micropores and mesopores than those prepared from PPTA pyrolyzed at a constant heating rate.  相似文献   

11.
Active carbon was prepared from Yallourn brown coal char using steam and carbon dioxide activation in a laboratory rotary kiln. The activation rate with steam was faster than that with carbon dioxide. The pore structure of the active carbons was characterized using the nitrogen isotherms at 77 K. The pore volume and specific surface area of the active carbon increased with the carbon burn-off, and compared to carbon dioxide, steam activation produced active carbon that was richer in mesopores by increasing the pore size from micropores to mesopores. The porosity of the active carbons was related to the ability to adsorb maltene, the normal hexane-soluble fraction, in the vacuum residue of petroleum crude. The steam-activated carbon rich in mesopores had a greater ability to adsorb maltene, which consists of large-molecular-weight hydrocarbons.  相似文献   

12.
Taixi anthracite was used as a precursor to prepare activated carbons (AC) for SO2 adsorption from flue gas. In this work the activated carbons were prepared by physical activation with steam. Specifically, the effects of activation temperature and burn-off degree on the physico-chemical properties of the resulting AC samples were comparatively studied. The different types of pore volumes, pore size distributions and surface chemistries of the activated carbons on the SO2 adsorption were also analyzed. The results show that the increasing burn-off leads to samples with continuous evolution of all types of pores except ultramicropore. The ultramicropore volume increases to a maximum of 0.169 cm3/g at around 50% burn-off and then decreases for 850 °C activation. At higher activation temperature, the micropore volume decreases and the mesopore structure develops to a certain extent. For all the resulting AC samples, the quantities of the basic surface sites always appear much higher than the amount of the acidic sites. The activated carbon prepared with higher micropore volume, smaller median pore diameter and higher quantities of the basic surface sites represents better SO2 sorption property.  相似文献   

13.
Phosphoric acid activated carbon discs for methane adsorption   总被引:2,自引:0,他引:2  
M Molina-Sabio  C Almansa 《Carbon》2003,41(11):2113-2119
Phosphoric acid has been used as activating agent in the preparation of binderless activated carbon discs. The granular precursor was impregnated with different solutions of phosphoric acid, hot pressed in discs, heat treated under a flow of nitrogen and washed with distilled water to extract the excess acid. The role of the impregnation ratio and the temperature of conforming have been analysed. The discs have a bulk density higher than the granular activated carbon because there is a considerable reduction of the interparticle space, the contribution of non-microporous volume being small. The discs exhibit a high volume of microporosity accessible to both nitrogen and methane molecules. Best results (storage capacity of 131, v/v) were obtained when using an impregnation ratio XP=0.35 g phosphorous/g precursor (maximum micropore volume and minimum interparticle space) and conforming at 100 °C (higher temperatures reduce the volume of micropores). Some discs were additionally activated under a flow of carbon dioxide, the maximum methane storage capacity (near 150, v/v) being obtained when burn-off is in the 10-40% range.  相似文献   

14.
An Asturian anthracite has been subjected to different pretreatments and subsequently activated by steam at 850°C to a total burn-off of 55 percent. The physical properties (micropore sizes and distributions, external surface areas, etc.) of the solids are compared with those of the carbon obtained by direct activation. Although the yield is generally low, it appears that better results are obtained by activation following preoxidation in air at 270°C for 3 days. In the case of pretreatments with a mixture of nitrogen, air, and water vapor at 450°C, the subsequent activation is less efficient. The micropore volumes and the pore size distributions are similar to those observed for soft precursors, but at a much lower degree of burn-off.  相似文献   

15.
《Fuel Processing Technology》2006,87(11):997-1006
Saskatchewan lignite was used as a precursor to prepare carbonaceous adsorbents for use as SO2 adsorbent from flue gases. The lignite was carbonized producing char in a fixed bed microreactor system at different temperatures from 350 to 550 °C in nitrogen atmosphere. The chars obtained at 475 °C for 120 min exhibited the highest micropore surface area (136 m2/g) and volume (0.062 cm3/g) and the smallest median pore diameter (∼ 0.7 nm). Carbon dioxide and steam were used as activating agents. Activation of char at optimum conditions of 650–675 °C for 15 min with carbon dioxide and steam resulted in a further increase in micropore surface area (220 and 186 m2/g for CO2 and steam, respectively) and volume (0.090 and 0.085 cm3/g for CO2 and steam, respectively). The yield of char was 64 wt.%, while the yields of activated carbon were 60 and 57 wt.% for CO2 and steam activation, respectively; all based on the mass of original lignite.  相似文献   

16.
The effect of a Lewis acid addition to a coking coal on the porosity and reactivity towards steam of the resulting iron enriched coal chars are studied. GIC (FeCl3 graphite intercalation compound) or free FeCl3 are used as iron containing additives. Coal iron enrichment was performed using either directly FeCl3 in vapour phase, or by mixing of coal and additives in decaline or by common grinding of coal and additives under argon. Iron enriched coals were carbonized at 750°C (heating RATE = 5°C min) and activation made with pure steam at 800°C to a burn-off off of 50 wt%. The pore structures of coal chars before and after activation were evaluated on the basis of CO2 and C6H6 sorption at 25°C. A significant development of the microporosity is observed in the iron enriched char before activation and its steam reactivity is also increased. After activation, BET surface area values are increased in presence of iron, and porosity is mainly microporous.  相似文献   

17.
This work focused on the preparation of activated carbon from eucalyptus and wattle wood by physical activation with CO2. The preparation process consisted of carbonization of the wood samples under the flow of N2 at 400°C and 60 min followed by activating the derived chars with CO2. The activation temperature was varied from 600 to 900°C and activation time from 60 to 300 min, giving char burn-off in the range of 20/2-83%. The effect of CO2 concentration during activation was also studied. The porous properties of the resultant activated carbons were characterized based on the analysis of N2 adsorption isotherms at −196°C. Experimental results showed that surface area, micropore volume and total pore volume of the activated carbon increased with the increase in activation time and temperature with temperature exerting the larger effect. The activated carbons produced from eucalyptus and wattle wood had the BET surface area ranging from 460 to 1,490 m2/g and 430 to 1,030 m2/g, respectively. The optimum activation conditions that gave the maximum in surface area and total pore volume occurred at 900°C and 60 min for eucalyptus and 800°C and 300 min for wattle wood. Under the conditions tested, the obtained activated carbons were dominated with micropore structure (∼80% of total pore volume).  相似文献   

18.
H. Jüntgen 《Carbon》1981,19(3):167-173
Experimental results of reactivity measurements on coal and chars to steam, hydrogen and steamhydrogen mixtures are compared and their application to technical processes is discussed. The change of surface area as a function of burn-off has a minor significance for chars made from coal with high initial accessible surface areas. In this case the reaction rate under constant steam pressure is first order with respect to the amount of carbon being gasified. The reaction rate of hydrogasification markedly decreases with burn-off, since the activation energy increases with burn-off due to the consumption of reactive carbon during the reaction. The reaction of carbon with steam hydrogen mixtures can be described as a superposition of carbon steam reaction and hydrogasification. The overall rate relative to that with hydrogen or steam alone can increase if a high amount of reactive carbon is present and immediately reacts with hydrogen. It can decrease if the inhibition of the steam carbon reaction by hydrogen predominates. Some consequences for the technical performance of coal gasification are: The overall reaction rate in a fluid bed decreases with increasing bed height, since hydrogen-steam ratios and therefore the inhibition by hydrogen increase. The overall reaction rate in a moving bed with countercurrent flow of carbon and reacting gases increases with increasing overall pressure since highly reactive carbon, formed in the pyrolysis zone, can immediately react with high partial pressures of hydrogen.  相似文献   

19.
In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si–H bonds.  相似文献   

20.
Active carbons with a burn-off of 52% have been prepared from four coals of different rank and origin after preoxidation to different degrees at 543 and 473 K, and further carbonization at 1123 K. The activation has been carried out with CO2 at 1123 K at two flow rates viz. 7 cm3 min−1 and 500 cm3 min−1. Active carbons have also been prepared from a preoxidized coal by activation to different degrees of burn-off between 10 and 80%. The effect of the degree of oxidation, the flow rate of the activating gas and the extent of burn-off on the porous structure development of active carbons has been examined. The active carbons prepared from unoxidized coal have poor textural characteristics (porosity, N2 and CO2 surface area). Nevertheless, the textural characteristics are enhanced as the degree of preoxidation of the coal is increased. The low flow rate of CO2 (activating gas) produces active carbons with a better microporous character. The degree of activation (the extent of burn-off) of the carbon determines the porous structure of the active carbon. At low degrees of burn-off (less than 50%) the product is largely microporous. At higher degrees of burn-off between 35–65% the product has a mixed porous structure and contains all types of pores. Active carbons with a given textural character can be obtained by controlling the degree of oxidation of coal and the degree of activation of the carbonized material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号