首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultralong (1.0 mm) aligned carbon nanotube (ACNT) electrode was fabricated by a cut/paste method. The electrode retains the intrinsic properties, including robust mechanical property, high surface area, and regular pore structure, of individual nanotubes. Electrochemical properties of the ACNT electrode in an ionic liquid (IL) electrolyte were studied by cyclic voltammetry, galvanostatic charge/discharge, and ac impedance spectroscopy. The ACNT electrode achieved a specific capacitance of 27 F/g, had excellent rate capability, and a long cycle life at 60 °C, indicating that an ACNT electrode/IL electrolyte electrochemical double layer capacitor is promising for high temperature (60 °C) applications. The capacitive performance of ACNT electrode is excellent, because it possesses large pores and regular pore structures, which is revealed by N2 adsorption and scanning electron microscopy.  相似文献   

2.
Q. Yang  Y. Tang  Y.S. Li 《Carbon》2008,46(4):589-595
Diamond thin films (on silicon wafers) and carbon nanotubes (CNTs) (on Inconel plates) were simultaneously synthesized at temperatures ?550 °C without any additional catalyst. The synthesis was achieved in a microwave plasma enhanced chemical vapor deposition (CVD) reactor with graphite etching in a gas mixture of hydrogen and methane. The substrate stage consisted of an Inconel 600 plate and a stainless steel plate separated by a 53 mm long quartz tube. Silicon wafers were placed on the stainless steel plate located at the upper part of the substrate stage, while Inconel plates were placed at the lower part of the substrate stage. During the deposition, the substrates were heated only by the plasma and the substrate temperature was controlled by the applied microwave power, which ranged from 350 W to 950 W. The backside temperatures of Si wafers ranged from 290 °C to 550 °C, higher than the corresponding temperatures of Inconel 600, which ranged from 220 °C to 350 °C. The Raman spectroscopic and electron microscopic results show that the thin films deposited on Si consist of well faceted polycrystalline diamond, and that the black soot deposited on Inconel plates is composed of multiwall carbon nanotubes as long as one millimeter.  相似文献   

3.
Zijiong Li  Ping liu  Haiyan Wang 《Carbon》2008,46(13):1819-1822
Single-walled carbon nanotubes (SWCNTs) were synthesized in reduced pressure air using pulsed arc discharge after preheating the catalyst. Our experimental results revealed that preheating the catalysts can assist the synthesis of SWCNTs in air under a pressure of 5-10 kPa. The SWCNTs have a diameter of 1.5-2 nm and length can reach several micrometers. The consumption rate of the anode and the production rate of CNTs and SWCNTs in air are lower than in helium atmosphere at the same pressure, respectively. Further experiment demonstrates that 600 °C is optimum temperature for preheating the catalysts to synthesize SWCNTs in air.  相似文献   

4.
High purity multi-walled carbon nanotubes were synthesized from aromatic hydrocarbons (benzene, toluene, xylene and trimethyl benzene) using ferrocene as the source of Fe catalyst. Screening studies of aromatic feeds at 675 °C, residence time of 14 s and Fe/C atom ratio of 1.07%, resulted in feedstock carbon conversion of 20-31%, CNT yield of 19.8-30.5%, and catalyst yield of 5.3-8.3 (g CNT/g catalyst). While the quality of the CNTs as determined by TGA, SEM, TEM and Raman spectroscopy, were high and comparable for different feedstocks; their carbon conversion, CNT yield and catalyst yield differed noticeably. A process optimization study for toluene feed showed that carbon conversion of more than 39%, CNT yield of 38.7% and catalyst yield of 18.3 can be achieved at temperature of 800 °C, Fe/C atom ratio of 0.47%, and residence time of 10-20 s.  相似文献   

5.
Experimental studies were conducted to assess catalytic chemical vapor infiltration processing for preparing carbon/carbon composites as a potential improvement to conventional one. The catalyst was introduced into the carbon fiber preforms by wet impregnation. Using C3H6/Ar/H2 as the original gas, catalytic carbon was formed at 500-1000 °C for 1-3 h. It was found that carbon filaments were formed as the preparing temperatures were 500-700 °C, and carbon particles could be obtained at 800-1000 °C. The increasing rate of density was up to 0.916 g/ml/h when the sample was formed at 600 °C for 1 h with the catalytic of 0.7 wt.% Ni, and the carbon yield arrived to 90 wt.% . According to the micrographs of catalytic carbon, the forming mechanism of carbon filaments agreed with that of carbon filaments due to a metal catalyst. The weighted average interlayer spacing of C/C composites with catalytic carbon decreased to 0.341.  相似文献   

6.
Mukul Kumar  Yoshinori Ando 《Carbon》2005,43(3):533-540
Single-wall and multi-wall carbon nanotubes (SWNTs and MWNTs, respectively) of controlled diameter distribution were selectively grown by thermal decomposition of a botanical hydrocarbon, camphor, on a high-silica zeolite support impregnated with Fe-Co catalyst. Effects of catalyst concentration, growth temperature and camphor vapor pressure were investigated in wide ranges, and diameter distribution statistics of as-grown nanotubes was analyzed. High yields of metal-free MWNTs of fairly uniform diameter (∼10 nm) were grown at 600-700 °C, whereas significant amounts (∼30%) of SWNTs were formed at 850-900 °C within a narrow diameter range of 0.86-1.23 nm. Transmission electron microscopy and micro-Raman spectroscopy reveal that camphor-grown nanotubes are highly graphitized as compared to those grown from conventional CNT precursors used in chemical vapor deposition.  相似文献   

7.
MWCNT coatings obtained by thermal CVD using ethanol decomposition   总被引:1,自引:0,他引:1  
A low-cost and reliable method to produce MWCNT coatings on large surfaces, with possibility to scale up to larger output, aiming at gas sensor applications is reported. The process was based on ethanol decomposition in the temperature range 700-900 °C. Different qualities of carbon were produced depending on the experimental parameters. For the samples deposited on sapphire and using Ni as catalyst a high diversity of carbon products (amorphous carbon, graphite plates, MWCNTs, onion-like graphene, etc.) were registered, while for the samples deposited on quartz MWCNTs with better crystallinity were observed. Carbon nanofibres (about 50-60 nm diameter) were observed only for the samples with Fe catalyst. Depending on temperature, nanotubes with different thickness of amorphous carbon coating occurred. According to our findings, the deposition of amorphous carbon phase can be minimized depending on the oxygen content in the process.  相似文献   

8.
Siang-Piao Chai 《Carbon》2007,45(7):1535-1541
The effect of catalyst calcination temperature on the uniformity of carbon nanotubes (CNTs) diameter synthesized by the decomposition of methane was studied. The catalysts used were CoO-MoO/Al2O3 without prior reduction in hydrogen. The results show that the catalyst calcination temperature greatly affects the uniformity of the diameter. The CNTs obtained from CoO-MoO/Al2O3 catalysts, calcined at 300 °C, 450 °C, 600 °C, and 700 °C had diameters of 13.4 ± 8.4, 12.6 ± 5.1, 10.7 ± 3.2, and 9.0 ± 1.4 nm, respectively, showing that an increase in catalyst calcination temperature produces a smaller diameter and narrower diameter distribution. The catalyst calcined at 750 °C was inactive in methane decomposition. Transmission electron microscopy (TEM) studies showed that CNTs grown on the catalyst calcined at 700 °C were of uniform diameter and formed a dense interwoven covering. High-resolution TEM shows that these CNTs had walls of highly graphitized parallel graphenes.  相似文献   

9.
Amorphous carbon nanostructures from chlorination of ferrocene   总被引:1,自引:0,他引:1  
The chlorination of ferrocene at different temperature conditions yields several carbon nanostructures, which were studied by means of transmission and scanning electron microscopies. Amorphous carbon nanotubes (α-CNTs) up to 10 μm long with thick walls and ∼15 nm of internal diameter were observed in a sample treated at 200 °C during 30 min. They consisted on ∼90% of carbon, while the remaining 10% consists on iron and chlorine. At this temperature, amorphous carbon bags and open-ended branches were also found. When chlorinating ferrocene at the same temperature but with longer reaction time (180 min), no α-CNTs were formed. At higher temperature (300 °C, 30 min), amorphous carbon bags were found, with lower content of residual chlorine and iron, and presenting thinner walls. In the sample treated at even higher temperature (900 °C, 30 min) the carbon nanobags (wall thickness ∼12 nm) were almost spherical and more graphitic, and without impurities.  相似文献   

10.
Robert J. Andrews 《Carbon》2006,44(2):341-347
Single walled nanotubes have been synthesized by chemical vapor deposition from camphor, camphor analogs (camphorquinone, norcamphor, norbornane, camphene, fenchone), and various other precursors (menthone, 2-decanone, benzene, methane). The high temperature conditions (865 °C) and Fe/Mo alumina catalyst used in the syntheses are archetypal conditions for the production of single walled carbon nanotubes. It has been shown that the mechanism of tube growth is unlikely to depend upon the production of reactive five- and six-member rings, as has been previously suggested. The results suggest that the presence of oxygen in the precursor does not significantly improve the quality of tubes by etching amorphous carbon: it is suggested that the control of the flux of the precursor to the catalyst is more important in the production of high quality tubes. There is, however, evidence for different distributions of tube diameter being produced from different precursors.  相似文献   

11.
Xiaosi Qi  Yu Deng  Youwei Du 《Carbon》2010,48(2):365-6792
High purity (99.21 wt.%) helical carbon nanotubes (HCNTs) were synthesized in large quantity over Fe nanoparticles (fabricated using a coprecipitation/hydrogen reduction method) by acetylene decomposition at 450 °C. Field-emission and transmission electron microscope images reveal that the selectivity to HCNTs (with two or three coiled nanotubes connected to a catalyst nanoparticle) is up to ca. 93%. The yield of HCNTs (as defined by the equation: ) is ca. 7474% in a run of 6 h, higher than any of those reported in the literature. If hydrogen was introduced during acetylene decomposition for ca. 30 min, the HCNTs mainly consisted of two coiled tubes connected to a catalyst nanoparticle, and carbon nanocoils (CNCs) of different structures were generated. If hydrogen was present throughout acetylene decomposition, worm-like carbon nanotubes (CNTs) as well as CNCs were produced in large quantities. Because the HCNTs and worm-like CNTs are attached to Fe nanoparticles, the nanomaterials are high in magnetization.  相似文献   

12.
Carbon-nickel composite thin films (600 nm thick) were prepared by dc magnetron sputtering of Ni and C at several temperatures (25-800 °C) on oxidized silicon substrates. By transmission electron microscopy it was found that the composite consisted of Ni (or Ni3C) nanoparticles embedded in a carbon matrix. The metallic nanoparticles were shaped in the form of globular grains or nanowires (of the aspect ratio as high as 1:60 in the sample prepared at 200 °C). The carbon matrix was amorphous, or graphite-like depending on deposition temperature. At low deposition temperatures TS (25-400 °C) the Ni3C nanoparticles were of hcp phase. Samples prepared at TS ? 600 °C contained ferromagnetic fcc Ni nanoparticles. A correlation was found between the structural, electrical and magnetic properties of the composites. To characterise the films, dependences, such as resistivity vs. temperature, current vs. voltage, differential conductivity vs. bias voltage, and magnetoresistivity, were determined. For example, the tunneling effect was found in samples in which the metallic nanoparticles were separated by 2-3 nm thick amorphous carbon. When the metallic nanoparticles were connected by graphite-like carbon regions (having a metallic conductivity, in contrast to a-C), the temperature coefficient of the resistivity became slightly positive. An anisotropic magnetoresistivity of ∼0.1% was found in the sample that contained ferromagnetic columnar fcc Ni. Zero magnetoresistivity was found in the sample in which the metallic nanoparticles were of non-magnetic hcp phase.  相似文献   

13.
Yue-Ying Fan  Alexander Mukasyan 《Carbon》2006,44(11):2160-2170
The floating catalyst (FC) method for synthesis of single- and multi-wall carbon nanotubes was optimized and scaled up to yield 6 g/h and 20 g/h of products, respectively. Different CNTs purification methods were compared. It was found that the procedure involving room temperature bromination is the most effective to purify the FC-CNTs. The hydrogen up-take capacities of the different products were measured using the quasi-equilibrium volumetric method. It was shown that, at room temperature and gas pressure up to 150 atm for both SWCNTs and MWCNTs, hydrogen up-take does not exceed 1.5 wt.% and is weakly dependent on the product purity.  相似文献   

14.
《Diamond and Related Materials》2007,16(4-7):1116-1120
In the arc plasma jet method, a large amount of soot including single-wall carbon nanotubes (SWNTs) can be produced in a short time (1–2 g/min). However, a lot of impurities, such as amorphous carbon and catalyst metals, are included in the produced soot besides SWNT. Purification is indispensable to apply SWNTs industrially, but it was difficult until recently. Here, we report that SWNTs can be purified easily in large quantities by reflux in the hydrogen peroxide solution using catalyst of iron particle, which can activate the oxidation reaction of hydrogen peroxide solution. Higher than 90 wt.% purity of SWNTs are obtained by this technique.  相似文献   

15.
Carbon nanofiber growth on palladium particles from ethylene-oxygen mixtures was investigated with respect to thermal history. Electron microscopy, combined with focused ion beam cross-sectioning show particles sinter quickly, but can be stabilized by the addition of a short carbon deposition step at a temperature below the general reaction temperature. This step generates a thin layer of carbon on the catalyst which reduces sintering once the temperature is raised to the optimal reaction temperature. For example, high temperature (e.g. 500 °C) catalyst pre-treatment leads to catalyst particle sintering, and subsequent fiber growth produces large diameter fibers. In contrast, small diameter fibers form on catalyst particles pretreated at low temperature (ca. 350 °C), even if the fibers are grown at a temperature at which deposition rates are faster (e.g. 550 °C). These results led to the development of unique multiple temperature fiber growth protocols that produce smaller diameter fibers while improving the deposition rate.  相似文献   

16.
José Maçaira 《Fuel》2011,90(6):2280-2288
Fatty acid methyl esters (biodiesel) were produced by the transesterification of triglycerides with compressed methanol (critical point at 240 °C and 81 bar) in the presence of solid acids as heterogeneous catalyst (SAC-13). Addition of a co-solvent, supercritical carbon dioxide (critical point at 31 °C and 73 bar), increased the rate of the supercritical alcohols transesterification, making it possible to obtain high biodiesel yields at mild temperature conditions. Experiments were carried out in a fixed bed reactor, and reactions were studied at 150-205 °C, mass flow rate 6-24 ml/min at a pressure of 250 bar. The molar ratio of methanol to oil, and catalyst amount were kept constant (9 g). The reaction temperature and space time were investigated to determine the best way for producing biodiesel. The results obtained show that the observed reaction rate is 20 time faster than conventional biodiesel production processes. The temperature of 200 °C with a reaction time of 2 min were found to be optimal for the maximum (88%) conversion to methyl ester and the free glycerol content was found below the specification limits.  相似文献   

17.
David Gingery 《Carbon》2008,46(14):1966-1972
Multiwalled carbon nanotubes (MWCNTs) were grown on W substrates by chemical vapor deposition and modified with Au nanoparticles by thermal evaporation. The resulting hybrid structures were investigated by TEM to determine the effects of evaporation rate, nominal film thickness, and substrate temperature on the nanoparticle size and distribution. The results demonstrate that as-grown MWCNTs can be used as a support for well distributed Au nanoparticles, with the size and distribution on the carbon nanotubes being primarily influenced by the nominal film thickness. The observed structures ranged from small 4 nm diameter spherical particles to 150 nm long wire-like structures. Depositions with substrates at 25 °C and 400 °C resulted in similar particle structures, except for the highest amount of deposited Au.  相似文献   

18.
Biodiesel production via transesterification of mustard oil with methanol using solid oxide catalyst derived from waste shell of Turbonilla striatula was investigated. The shells were calcined at different temperatures for 4 h and catalyst characterizations were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectrometer (FT-IR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC) and Brunauer-Emmett-Teller (BET) surface area measurements . Formation of solid oxide i.e. CaO was confirmed at calcination temperature of 800 °C. The effect of the molar ratio of methanol to oil, the reaction temperature, catalyst calcination temperature and catalyst amount used for transesterification were studied to optimize the reaction conditions. Biodiesel yield of 93.3% was achieved when transesterification was carried out at 65 ± 5 °C by employing 3.0 wt.% catalyst and 9:1 methanol to oil molar ratio. BET surface area indicated that the shells calcined in the temperature range of 700 °C-900 °C exhibited enhanced surface area and higher pore volume than the shells calcined at 600 °C. Reusability of the catalysts prepared in different temperatures was also investigated.  相似文献   

19.
Felt-like mats (6-7 μm thick) of multiwalled carbon nanotubes wrapped into scrolls have been synthesized by chemical vapor deposition from a toluene-ferrocene mixture using a temperature ramp from 680 °C to 550 °C in hydrogen-argon atmosphere. Thermogravimetric analysis reveals a very low catalyst content of ca. 1.25 wt% in the as-synthesized sample while, X-ray photo electron and Raman spectroscopies suggest the results matching with that of multiwalled carbon nanotubes. Considering, different time scales of various reactions and the diffusion of different reactants and products a tentative base growth mechanism has been proposed as per the available characterization data in conjunction with possible scrolling effects. Thermal expansion effects could explain a tentative mechanism for rolling action of sheets. Interestingly, electrical conductivity measurements as a function of temperature suggest a semiconducting behavior, despite being governed by different electron transport mechanisms with activation energies of 0.33 and 1.03 meV corresponding to two temperature ranges respectively. Cyclic voltammetry and electrochemical impedance analysis show a reversible redox behavior due to very low catalyst content and an irreversible etching of the Fe catalyst after acid treatment.  相似文献   

20.
Alumina (Al2O3)/carbon nanotube (CNT) (99/1 by weight) composite was prepared by mixing CNT dispersion with AlCl3-based gel, followed by high temperature sintering at a temperature up to 1150 °C in argon. Composite alumina precursor showed phase transition order from amorphous to γ-Al2O3 after sintered at 900 °C for 2 h, partially to θ-Al2O3 after sintered at 1000 °C for 2 h, and then partially to α-Al2O3 after sintered at 1150 °C for 2 h. By comparison, control alumina precursor directly transformed from amorphous to α-Al2O3 after sintered at a relatively low temperature of 600 °C for 2 h. Composite alumina showed porous structure with pore diameter ranging from 100 nm to 2 µm, whereas control alumina was relatively pore-free. The elevated alumina-crystal phase transition temperatures and the formation of porous structure were ascribed to the presence of CNTs in alumina precursor. The composite alumina sintered at 900 °C for 2 h containing only γ-Al2O3 had a BET surface area of 138 m2/g, which was significantly higher than that of control alumina sintered at 1150 °C for 2 h containing only α-Al2O3, ~15 m2/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号