首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
Differential scanning calorimetry and IR-spectroscopy have been used to study the depolymerization of the 2D tetragonal (T) polymerized phase of C60 at p = 1 atm. The depolymerization enthalpy obtained was 17.7 ± 1.7 kJ per mole of C60. Experimental enthalpies of depolymerization along with the lattice energies calculated by the atom-atom potential method were combined into the thermochemical cycles to account for the trends in the relative stability of the polymerized phases of C60. Surprisingly low depolymerization enthalpy of 2D rhombohedral (R) phase compared to 1D orthorhombic (O) and 2D T-phases was explained by the unfavorable packing energy of the isolated rhombohedral layers into R-crystal lattice, though the averaged C60 = C60 bond energy was also lower for R- than for O- and T- phases, being 31, 42 and 43 kJ/mol, respectively. Results of DFT quantum chemical calculations of the energetics of C60 polymers were in qualitative agreement with this trend. The mechanism of depolymerization appeared to be significantly different for R-phase compared to other polymers. While decomposition of O- and T-phases occurred in one step without any IR-detectable intermediate species, depolymerization of R-phase was found to be at least a two-step process. Comparison of experimental and DFT simulated IR-spectra suggested that intermediate species were cyclic trimers or similar oligomers.  相似文献   

2.
Fluorination of carbon nanofibres (CNFs) under fluorine gas at 480 °C leads to high fluorine content but also to some partial exfoliation. In order to avoid such phenomenon, an alternative route has been performed at temperatures ranged between 420 and 500 °C using a fluorinating agent, i.e. terbium tetrafluoride. The structural properties of the fluorinated CNFs are discussed taking into account the data of 13C solid state NMR, Raman spectroscopy, SEM, TEM and XRD. Whatever the fluorination temperature, a fluorinated phase of (CF)n structural type, is formed contrary to the direct process using F2 gas for which a (C2F)n-type fluorinated phase appeared for fluorination temperatures lower than 450 °C. The progressive release of fluorine atoms from the thermal decomposition of TbF4 allows an homogenous distribution of the fluorinated part into the CNFs matrix and the formation of a unique (CF)n type structure. Moreover, for high fluorination temperatures (480 and 500 °C), the fluorination leads to some nanofibres breaking but in no way to exfoliation.  相似文献   

3.
Qingzeng Zhu  Charles C. Han 《Polymer》2007,48(13):3624-3631
Studies on fluorine containing condensation polymers are limited compared to that of fluorine containing addition polymers. In this report, highly fluorinated aromatic polyesters were synthesized by a polycondensation reaction of tetrafluorophthalic anhydride with ethylene glycol. Viscosity, solubility, thermal properties and crystallization behaviors of fluorinated polyesters were investigated using IR, 19F NMR, DSC, GPC, polarized optical microscope and rheometer. The fluorinated polyester is insoluble in most organic solvents, such as acetone, ethyl acetate, chloroform, THF, and trichloromethane. However, it is soluble in highly polar solvents, such as dimethylsulfoxide, dimethylformamide and dimethylacetamide. The fluorinated polyester (o-PETF) is a crystalline polymer with a crystallization enthalpy of 35.2 J/g and a broad crystallization temperature range from 54 to 130 °C. Average crystalline growth rate is 4.2 μm/min at 110 °C in the preliminary 30 min. Spherulite growth was observed at the temperature when the dendrites begin to melt. Crystallization property of o-PETF may be ascribed to the higher mobility of fluorinated polyester chains and dipolar contribution of carbon-fluorine bonds.  相似文献   

4.
A.V. Talyzin  A. Dzwilewski 《Carbon》2007,45(13):2564-2569
Formation of palladium fullerides from various Pd:C60 compositions was studied by XRD, Raman spectroscopy and TEM. Raman spectra of PdxC60 samples show close similarity to spectra of C60 polymers obtained under high pressure/high temperature conditions and suggest the formation of chain-like and two-dimensional polymeric structures in PdxC60 of various compositions. Thermal decomposition of PdxC60 results in the formation of fine 5-10 nm size nanoparticles of palladium which can be used for catalytic applications.  相似文献   

5.
Naoto Ohta  Yoko Nishi  Tetsuro Tojo 《Carbon》2008,46(10):1350-1357
Pyrolysis and carbonization behaviors of fluorinated aromatic polyimide films synthesized from fluorinated dianhydrides and diamines were investigated by thermogravimetric and mass spectrometric measurements. Evolution of fluorine compound gases and related species was observed during the pyrolysis in the temperature range from 450 to 700 °C, in addition to the evolution of CO and CO2 due to the imide ring degradation. By the carbonization of these fluorinated polyimides at 600-1000 °C, highly microporous carbons were obtained without any activation process, of which adsorption/desorption isotherm of N2 gas was typical type I and pore size distribution was sharp at around 0.55 nm in width. Surface area increased with increasing fluorine content in the repeating unit of fluorinated polyimide: the polyimide with the highest fluorine content of 31.3 mass% gave a high microporous surface area of 1342 m2 g−1 and micropore volume of 0.44 mL g−1.  相似文献   

6.
Precursors for the preparation of bulk Sr-doped TiB2 composites were synthesized by modified Pechini method. The high temperature behaviour of homogeneous Sr-Ti-B-C-O gels was investigated in the range 1200-1650 °C. DTA-TG analysis of the precursor powder shows two steps of the carbothermal reduction with endothermic peaks at temperatures of 1335 °C and 1500 °C. The influence of strontium content (2, 5, 10, 20 and 50 mol.%) on the phase composition and morphology of powders at 1650 °C was studied.Due to the shift of TiB2 diffractions and the detection of strontium in TiB2 grains by EDX analysis the formation of Ti1 − xSrxB2 solid solution is assumed in the Sr-doped powders. Finally, Sr-doped TiB2 composites were inductive hot-pressed from the as prepared powders at 1900 °C for 7 min. The formation of SrTiO3 phase in the powders is serving as a sintering aid during the preparation of bulk Sr-Ti-B composites. The exaggerated grain growth (grain size up to ∼60 μm) occurs during the sintering with increasing content of strontium in the precursor.  相似文献   

7.
The crystal structure, phase transition and thermal expansion behaviors of solid solutions Sc2−xCrxMo3O12 (0≤x≤2) were investigated using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). At room temperature, samples with x≤0.7 and x≥0.8 crystallize in orthorhombic and monoclinic structures, respectively. DSC result indicates that the phase transition of Sc0.5Cr1.5Mo3O12 from monoclinic to orthorhombic structure occurs at 203.66 °C. The linear thermal expansion coefficient of orthorhombic phases varies from −2.334×10−6 °C−1 to 0.993×10−6 °C−1 when x increases from 0.0 to 1.5. The near-zero linear thermal expansion coefficients of −0.512×10−6 °C−1 and −0.466×10−6 °C−1 are observed for compounds with x=0.5 and 0.7, respectively.  相似文献   

8.
The electrochemical decomposition of environmentally persistent perfluorooctanoic acid (PFOA) was achieved by the use of a boron-doped diamond (BDD) electrode. The PFOA decomposition follows pseudo-first-order kinetics, with an observed rate constant (k1) of 2.4 × 10− 2 dm3 h− 1. Under the present reaction conditions, k1 increased with increasing current density and saturated at values over 0.60 mA cm− 2. Therefore, the rate-limiting step for the electrochemical decomposition of PFOA was the direct electrochemical oxidation at lower current densities. In the proposed decomposition pathway, direct electrochemical oxidation cleaves the C-C bond between the C7F15 and COOH in PFOA and generates a C7F15 radical and CO2. The C7F15 radical forms the thermally unstable alcohol C7F15OH, which undergoes F elimination to form C6F13COF. This acid fluoride undergoes hydrolysis to yield another F and the perfluorocarboxylic acid with one less CF2 unit, C6F13COOH. By repeating these processes, finally, PFOA was able to be totally mineralized to CO2 and F. Moreover, whereas the BDD surface was easily fluorinated by the electrochemical reaction with the PFOA solution, medium pressure ultraviolet (MPUV) lamp irradiation in water was able to easily remove fluorine from the fluorinated BDD surface.  相似文献   

9.
Haitao Gu 《Electrochimica acta》2009,54(27):7094-9945
The electrochemical properties of LaBaCo2O5+δ-xSm0.2Ce0.8O1.9 (LBCO-xSDC, x = 20, 30, 40, 50, 60, wt%) were investigated for the potential application in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The LBCO-50SDC composite cathode exhibited the best electrochemical performance in the LBCO-xSDC cathodes. With x = 50 wt%, the ASR was 1.308 Ω cm2 at 500 °C (0.267 Ω cm2 at 600 °C and 0.052 Ω cm2 at 700 °C). The maximum of exchange current density i0 was 0.5630 A cm−2 at 700 °C. The improved electrochemical properties of LBCO-50SDC were ascribed to the porous structures of the cathode and more cathode/electrolyte/gas triple phase boundary (TPB) areas.  相似文献   

10.
Direct electrochemical oxidation of hydrocarbon fuels is a current development trend of solid oxide fuel cells (SOFCs) and finding new anode materials for this application is a key issue. In this study, promising candidates, Y2O3-doped SrTiO3 perovskite compounds Sr1−1.5xYxTiO3 (x = 0.02, 0.04, 0.06, 0.08, 0.10), were synthesized by solid-state reaction. The structure of the calcined powders was examined by X-ray diffraction (XRD). The sinterability and high temperature conductivity were measured by the Archimedes principle and a dc four-probe method, respectively. The effect of sintering temperature on the electrical conductivity was studied. The results indicated that the optimal sintering temperature is around 1400 °C. From 400 °C to 1000 °C, the conductivity decreased with increasing temperature. At 800 °C the highest conductivity (26.8 S/cm) was observed for x = 0.08.  相似文献   

11.
Watcharee Katinonkul 《Carbon》2007,45(13):2672-2677
Graphite chelate borate intercalation compounds, CxB[OC(CF3)2C(CF3)2O]2 · δF and CxB[OC(CF3)2C(O)O]2 · δF, are prepared for the first time by chemical oxidation of flaky graphite with fluorine gas in the presence of a solution of the intercalate anion in anhydrous hydrofluoric acid. Powder XRD data indicate that products up to stage 1 with gallery heights, di = 1.43-1.45 nm are formed. The compositions of CxB[OC(CF3)2C(CF3)2O]2 · δF and CxB[OC(CF3)2C(O)O]2 · δF are determined using B and F elemental analyses. Thermogravimetric analyses indicate the graphene sheets begin to decompose before intercalate thermolysis is complete.  相似文献   

12.
Man He  Jia Dai  Yiping Cui 《Polymer》2009,50(16):3924-2572
The novel fluorinated polyimides with side-chain nonlinear optical (NLO) chromophores were synthesized from hydroxyl polyimides, followed by the Mitsunobu reaction with NLO chromophores. Molecular structural characterization for the resulting polymers was achieved by 1H NMR, FT-IR, UV-Vis spectra, elemental analysis and gel permeation chromatography (GPC). The polymers exhibit excellent solubility in common organic solvents, good film-forming properties, high glass transition temperature (Tg) in the range from 193 to 200 °C and thermal stability up to 290 °C. The polyimides P1 and P2 containing hetarylazo chromophores with large hyperpolarizability possess a high electro-optic (EO) coefficient (r33), which is larger than that of the polyimide P3 attached DR1. Excellent temporal stability and low optical losses in the range of 1.9-2.1 dB/cm at 1.55 μm were observed for these polymers. Such new NLO fluorinated polyimides are distinguished by an excellent combination of NLO activity, temporal stability, and optical loss.  相似文献   

13.
Members of the solid-solution series Ce1−xSrxPO4−δ (x = 0, 0.01, 0.02) with mixed protonic and electronic transport have been synthesized by a nitrate-decomposition method followed by sintering at 1450 °C. Impedance spectroscopy is employed to estimate the bulk electrical conductivity in wet (∼0.03 atm) and dry atmospheres of O2 and 10%H2:90%N2. Conductivity increases with dopant concentration (x), oxygen partial pressure (pO2) and water vapour partial pressure (pH2O) reaching ∼3.5 × 10−3 S cm−1 at 600 °C for x = 0.02 in wet O2. Activation energies (Ea) for the bulk conductivity of Ce0.98Sr0.02PO4−δ below 650 °C are 0.44 and 0.78 eV for wet oxidising and wet reducing conditions, respectively. A moderate but positive pO2+n power-law dependence (n < 1/10) of conductivity is exhibited in the pO2 range 10−2.5 to 10−1 atm, consistent with mixed ionic and p-type electronic transport. Thermogravimetric analysis indicates that the Sr-doped materials are stable in a CO2 atmosphere in the temperature range 25–1200 °C.  相似文献   

14.
Based on first-principles calculations, we present the distributions of mechanical properties and formation ability of amorphous BxCyNz solids on the ternary B-C-N phase diagram. Along the C-BN isoelectronic line, the formation energy shows symmetric distributions; the Young's modulus and ratio of bulk modulus and shear modulus (B/G) show zonal distributions. Amazingly, for some peculiar compositions (B: 13-17 at.%; C: 48-52 at.%; N: 33-35 at.%), B-C-N solids exhibit certain ductile characteristic that is comparable to metals. On the phase area (B: 15-30 at.%; C: 50-60 at.%; N: 20-30 at.%), B-C-N solids possess both excellent hardness and good formation ability. These theoretical results provide valuable guidance for intentionally synthesizing BxCyNz materials with desirable mechanical properties.  相似文献   

15.
Electrodeposition of Ni1−xFex (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm2) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or γ phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or α phase in the range of 64-90 wt.% Fe. The saturation magnetization, Bs, of electrodeposited Ni1−xFex alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of α-Ni36Fe64 alloy results in a martensitic α → γ phase transformation, which takes place between 300 and 400 °C. It was demonstrated that thermal treatment above 400 °C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of α-Ni36Fe64 alloy at 700 °C brings about a decrease of Bs from 1.75 to 0.45 T. By controlling the annealing conditions of α → γ martensitic transformation, it is possible to adjust the CTE of Ni36Fe64 alloy over the broad limits from 2.7 to 8.7 × 10−6/°C.  相似文献   

16.
A series of linear and star-shaped poly(l-lactide)s (PLA's) have been prepared by living polymerization of l,l-dilactide (LA) and analyzed by liquid chromatography at critical conditions (LC-CC). For the analysis of the PLA's LC-CC conditions have been used corresponding to silica gel as the stationary phase and a mixture of 1,4-dioxane/n-hexane (56.25/43.75 by vol%) at 50 °C as the mobile phase. At the critical point of adsorption, a series of linear C4H9-PLA-OH's having molar masses (Mn) in the range from 2.3×103 to 7.4×104, prepared by ring-opening polymerization of LA initiated with Sn(OC4H9)2 (THF, 80 °C), showed no dependence of the elution volumes on molar mass. In subsequent experiments, star-shaped PLA's bearing various numbers of PLA-OH arms (R-(PLA-OH)x) have been prepared in a controlled synthesis starting from various polyols (R-(OH)x) containing exclusively primary hydroxyl groups: diethyleneglycol (x=2), trimethylolpropane (x=3), di(trimethylolpropane) (x=4), dipentaerithritol (x=6), and poly(3-ethyl-3-hydroxymethyloxetane) (〈x〉=13.4) and LA monomer. As coinitiator/catalyst tin(II) octoate (Sn(Oct)2) has been used (bulk polymerization, 120 °C). 1H NMR analysis of the resulting star-shaped polymers revealed that all OH-groups in the polyols started growth of the PLA chains. The series of star-shaped PLA's have been analyzed by LC-CC as well as by two-dimensional (2D) chromatography (i.e. LC-CC versus size exclusion chromatography (SEC)) with regard to possible structural imperfections. It has been shown, that the LC-CC elution volumes of the resulting R-(PLA-OH)x increase with the number of PLA-OH arms, allowing discrimination of the individual R-(PLA-OH)x's in their mixture. An exponential increase of the retention volume as a function of the number of arms has been found. Eventually, LC-CC measurements of the elution volumes carried out for acetylated star-shaped PLA's (R(PLA-OOCCH3)x) have shown that for the interactions of the R-(PLA-OH)x macromolecules with the column packing the hydroxyl end-groups are mostly responsible.  相似文献   

17.
YCr1−xMnxO3 (0 ≤ x ≤ 0.8) negative temperature coefficient (NTC) compositions were synthesized by classical solid state reaction at 1200 °C, and sintered under nitrogen atmosphere at 1500 °C and 1600 °C. XRD patterns analysis has revealed that for x ≤ 0.6, the structure consists of a solid solution of an orthorhombic perovskite YCrO3 phase with Mn substitute for Cr. For x ≥ 0.8, a second phase with a structure similar to the hexagonal YMnO3 phase appears. SEM images and calculated open porosity have shown that the substitution of Mn for Cr results in a decrease in porosity. Whatever the sintering temperature, the electrical characterizations (between 25 and 900 °C) have shown that the increase in the manganese content involves the decrease in both resistivity and material constant B (parameter which characterizes the thermal sensitivity of material) when x ≤ 0.6. The magnitude order of the resistivity at 25 °C is of 104-108 Ω cm and activation energies vary from 0.28 to 0.99 eV at low and high temperatures, respectively.  相似文献   

18.
Carbon supported RuSex (x = 0.35-2) catalysts of controlled stoichiometry and phase are synthesized via precipitating ruthenium nanoparticles on Vulcan XC-72R, then selenizing ruthenium with hydrogen annealing. The competition for Se between solid-state Ru selenization and volatile selenium hydride formation results in RuSex nanoparticles with the pyrite structure, the Ru hcp structure, or a mixture of the two. These catalysts are methanol tolerant, and catalytically active toward oxygen reduction reaction (ORR). RuSex/C (x ≅ 2) with a pyrite structure, produced at 400 °C, exhibits catalytic activity and stability superior to that of RuSex/C with a ruthenium hcp structure or a mixed phase. And this pyrite RuSex/C (x ≅ 2) catalyst yields H2O2 less than 1.5% in the technically pertinent potential range of 0.4-0.6 V (vs. Ag/AgCl). Its stability is verified in 100 CV cycles, which shows that the catalyst annealed at 400 °C is more enduring in potential cycling over 0.65 V (vs. Ag/AgCl), compared with the RuSex/C catalyst annealed at 300 °C and the RuSecluster/C reference catalyst prepared by thermolysis of Ru3(CO)12. After CV cycles, the 400 °C-annealed catalyst still exhibits a higher ORR activity than the other two catalysts.  相似文献   

19.
Dieter Heymann 《Carbon》2005,43(11):2235-2242
The mean lifetimes of polyyne C8H2 in hexane were determined at 50, 60, 80, and 100 °C and in methanol at 60 °C. The reactions are second order at all temperatures: ln k2 = 20.5 ± 1.5-10303 ± 520T−1 and the corresponding activation energy is 85.7 ± 6.3 kJ mol−1 (7164 cm−1). Extrapolation suggests that solutions at 1 mM concentration are significantly unstable at room temperature. Quantum chemical calculations show that polyynes CmH2 + CnH2 (m + n = 16) could be products, but these were not detected. Alternatively, C16H2 isomers could form. IR spectra of the solid residues from hexane and methanol solutions were obtained.  相似文献   

20.
RuO2·xH2O/NiO composites having RuO2 contents in the range 0-100 wt.% have been prepared by a co-precipitation method. Structural, microstructural and textural transformations after heating the as-prepared composites at 200 and 600 °C have been followed by X-ray diffraction, scanning electron microscopy (SEM) and nitrogen adsorption/desorption isotherms. At 200 °C the composites are made of micrometric particles in which nanometric crystallites of the two oxides are aggregated. The composites show microporosity (0.02-0.10 cm3/g), mesoporosity (0.07-0.12 cm3/g) and relatively high specific surface area (62-309 m2/g). At 600 °C the composites are fully dehydrated and RuO2 has crystallized and segregated. Microporosity and mesoporosity as well as specific surface area are strongly decreased. Specific capacitance and specific surface area of the composites heated at 200 and 600 °C have been measured and discussed on the basis of the RuO2 content. For comparison the specific capacitance and specific surface area of mixtures of NiO and RuO2·xH2O (or RuO2) have been taken as references. The higher specific capacitance of the 200 °C-heated composites compared to the 600 °C-heated ones is due to the higher specific surface area of the former and the higher pseudocapacitance of RuO2·xH2O compared to RuO2. The discussion reported in this work can be applied to other composites such as RuO2·xH2O/carbon and RuO2·xH2O/other oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号