首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
高致密球形黑索今晶体的制备和性能   总被引:1,自引:0,他引:1  
芮久后  赵雪 《兵工学报》2013,34(1):41-44
介绍了一种能够制备高致密黑索今(RDX)晶体的方法。分析溶液浓度、结晶温度、搅拌速率、稀释速率等工艺条件变化对于RDX晶体密度的影响,制备了高致密RDX晶体。测试了高致密RDX晶体的晶体形状和缺陷、晶体密度、熔点、热性能和热感度。结果表明,采用特定工艺条件制备出的高致密RDX晶体和普通RDX晶体相比,密度增加0.023g/cm3,高达1.808g/cm3,是理论密度的99.56%;内部缺陷明显减少;熔点提高1.5℃,分解峰温度提高3.66℃;5s爆发点提高1℃,安全性能略优于普通RDX.  相似文献   

2.
含RDX的炸药废水O3氧化处理试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
艾翠玲 《含能材料》2007,15(2):178-180
为研究臭氧(O3)对含黑索今(RDX)的炸药废水的处理效率,向RDX废水连续通O3进行试验,采样分析RDX浓度、化学需氧量(COD)等。结果表明:浓度为3.0 mg.L-1的O3氧化10 mg.L-1的RDX 2 h可使RDX去除58.01%;pH=12,O3氧化4 h可除去约83.15%的RDX;提高废水的pH值、降低RDX浓度及提高温度均利于O3氧化效率的提高。可见,对于pH值较高、浓度较低的RDX废水,单独利用O3氧化法处理是可行的。  相似文献   

3.
运用动态真空安定性试验(Dynamic Vacuum Stability Test,DVST)方法研究了RDX的热分解过程,对测试数据拟合求解得出RDX在非等温阶段的分解机理函数为Avrami-Erofeev方程(n=4),表观活化能为174.10kJ.mol-1,lnA为34.45;等温阶段的分解机理函数为Anti-Jander方程模型,即G(α)=(1-2/3α)-(1-α)2/3,反应速率常数k=1.63×10-5s-1。分解气相产物在标准状态下为0.10mL.g-1。实验不仅得到了与真空安定性试验(VST)方法相吻合的分解最终结果,还得到了合理有效的动力学参数,证明了DVST方法的科学性和可靠性。实验实时跟踪了RDX的分解过程,得到了分解过程中各物理量的变化信息,为RDX的安全储存、可靠使用提供更为有效的数据。  相似文献   

4.
王娟  孙笑  周新利 《含能材料》2015,23(6):527-531
为了解高级脂肪酸酯类化合物对黑索今(RDX)性能的影响,以RDX为主体,分别添加质量分数为3%和5%的2,3-二羟甲基-2,3-二硝基-1,4-丁二醇四月桂酸酯(BHDBTL)、2,3-二羟甲基-2,3-二硝基-1,4-丁二醇四硬脂酸酯(BHDBTS)和2,3-二羟甲基-2,3-二硝基-1,4-丁二醇四(12-羟基硬脂酸酯)(BHDBTHS)包覆RDX,制备了6个钝感RDX配方。用红外光谱(IR)、扫描电镜(SEM)、激光粒径分析、差示扫描量热分析(DSC)表征了包覆前后RDX的结构和性能,并依据GJB772-1997测试了其机械感度。结果表明,被5%BHDBTL,BHDBTS,BHDBTHS包覆的RDX比表面积分别由0.0374m2·g-1增大至0.173m2·g-1、0.344m2·g-1、0.328m2·g-1;包覆后RDX的分解热提高,当包覆剂为5%BHDBTHS时,RDX的分解热由1479.1J·g-1提高至1912.5J·g-1;当包覆剂为5%的BHDBTL、BHDBTS和BHDBTHS时,包覆后RDX的撞击感度分别为28%、48%、52%,摩擦感度分别为20%、60%、48%。  相似文献   

5.
采用溶胶凝胶法制备Fe2O3凝胶模板,加入黑索今(RDX)和硼(B)粉,制得RDX/B/Fe2O3复合湿凝胶,利用超临界CO2流体干燥工艺对其进行干燥,得到RDX/B/Fe2O3纳米复合含能材料。讨论了湿凝胶制备和超临界CO2流体干燥工艺中对凝胶结构和粒子大小的影响因素,获得了最佳制备工艺条件:Fe3+浓度0.20mol·L-1,n(Fe3+)∶n(C3H6O)=1∶15,超临界流体的温度40℃和压力10 MPa,干燥釜升压时CO2流入的速率15L·h-1,干燥釜平衡换气时CO2流体的流速2L·h-1。在此条件下制备得到纳米复合含能材料RDX/B/Fe2O3(质量比为90∶2∶8),利用扫描电镜,差示扫描量热分析了样品的微观形貌和热分解特性,测试了机械感度。结果表明,所得纳米含能材料粒度为30~50nm;RDX/B/Fe2O3分解放热起始温度比原料RDX提前了7℃,放热量提高了885J·g-1,机械感度H50=40.8cm。  相似文献   

6.
为了研究固体推进剂捏合工序燃爆事故成因,通过现场调研及以往事故案例分析,针对捏合工序构建了燃爆事故树,对燃爆事故树进行定性、定量分析.结果表明:导致顶上事件发生的最小割集有81个,最小径集有5个,且每个最小径集中包含的基本事件均较多,即捏合工序的安全程度较低.同时计算出各个基本事件的结构重要度,通过结构重要度排序得到导致捏合工序燃爆事故发生的主要基本事件有:热分解产生气泡、混入硬性杂质、含水率过低等.在事故树分析的基础上,有针对性地提出了合理提高捏合工序本质安全程度的改进措施,可为类似生产线的安全管理提供理论依据.  相似文献   

7.
考察了离子盐1-甲基咪唑硝酸盐(NO3)辅助直接硝解乌洛托品(HA)制备黑索今(RDX)的结晶工艺条件。研究了搅拌速度、结晶温度、NO3用量、滴水速度对RDX晶形的影响。用扫描电镜和撞击感度仪分析、表征了其晶形和感度。结果表明,最佳结晶工艺条件为: NO3与HA的物质的量之比为0.015,水的滴加速度1滴/40 s,搅拌速度800 r·min-1,结晶过程温度10~70 ℃。该工艺条件下所得RDX粒度均匀,形状规整,呈八面体型。按GJB772A-1997-601.1方法,测得其爆炸概率为17%。  相似文献   

8.
为探究介孔碳纳米球(MCS)对氧化剂环三亚甲基三硝铵(RDX)热分解性能的影响,通过双模板法制备出粒径约350 nm的MCS,利用主客体化学技术将RDX晶体引入MCS孔内及表面,得到MCS/RDX复合物。采用扫描电镜(SEM)、X射线粉末衍射(XRD)对MCS和MCS/RDX复合物的形貌和结构进行表征;通过傅里叶红外变换光谱(FTIR)研究了MCS与RDX之间的界面相互作用;利用差示扫描量热-热重分析(DSC-TG)研究MCS/RDX复合物的热行为,相比纯RDX,MCS/RDX复合物的分解温度降低13℃,放热量增加,表观活化能从234.87 kJ·mol-1降低到126.48 kJ·mol-1。采用落锤撞击感度仪和静电火花装置测试所得材料感度。与纯RDX相比,MCS/RDX复合物的撞击感度和静电火花感度明显降低。这些结果表明,MCS对RDX的热分解具有较好的催化性能,并能降低RDX的感度。  相似文献   

9.
为探究改性双基推进剂的热安全特性,采用差示扫描量热法(DSC)对黑索今(RDX)含量分别为0,18%,46%和54.6%的改性双基推进剂的热分解行为进行了研究,得到了升温速率2,5,10℃·min-1和20℃·min-1下的热分解温度。通过热反应动力学分析计算了其表观活化能、指前因子、反应速率、吉布斯自由能、活化焓及活化熵,分析了RDX含量对双基组分及表观活化能的影响规律。通过慢速烤燃和5s爆发点试验得到不同RDX含量改性双基推进剂的响应特性。结果表明,配方中RDX含量为18%时,表观活化能最大,慢速烤燃和5s爆发点响应温度和响应剧烈程度最低;随着RDX含量的增加,DSC第一分解峰温后移,表观活化能降低,双基推进剂的慢速烤燃响应温度向高温方向移动,体系热敏感性降低,但响应等级随之提升;当RDX含量在46%及以上时,响应等级为爆炸,不能通过慢速烤燃试验考核;5s爆发点温度随着RDX含量的增加向高温方向移动,且上升趋势较为明显,改性双基推进剂的热安定性有所提升。  相似文献   

10.
超声和喷雾辅助制备微米球形化RDX   总被引:1,自引:0,他引:1  
采用超声喷雾辅助重结晶装置对RDX进行重结晶研究,以二甲基亚砜为溶剂,纯净水为非溶剂,制备了微米球形化RDX。用扫描电镜和激光粒度分析仪对RDX的形貌和粒度进行了表征,并测试了样品的热分解性能和撞击感度。结果表明:制备的样品呈球形,颗粒分布均匀,中值粒径为2.65μm;和原料相比,重结晶RDX的撞击感度明显降低,特性落高(H50)由21.51cm升高到36.43cm。经过该重结晶工艺,RDX的活化能和热爆炸临界温度略有升高。  相似文献   

11.
面向装备使用安全的HAZOP方法   总被引:1,自引:0,他引:1  
焦健  王薇  赵廷弟  吴洋 《兵工自动化》2009,28(9):58-60,65
为提高系统安全性,装备在研制生产过程中开展全面的安全性分析设计,提高固有安全性,但在装备使用安全方面仍存在不足。在分析化工领域广泛使用的HAZOP方法的基础上,针对装备系统安全性的特点,提出面向装备使用安全的HAZOP分析流程:查找装备使用操作过程中可能存在的偏差,并对偏差进行分析,确定原因和后果。实际装备分析证明该方法科学。  相似文献   

12.
为探索高致密球形黑索今(H-RDX)与普通黑索今(RDX)对浇注炸药性能的影响,采用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等对两者的晶体形貌、热稳定性及机械感度进行评估;同时以典型浇注配方为例,探讨RDX类别对药浆黏度、药柱密度、爆速和冲击波感度的影响规律。结果表明:H-RDX表面光滑,晶体缺陷少,球形度高;与普通RDX相比,H-RDX的热分解表观活化能Ea和活化焓ΔH分别高10.79 kJ·mol^-1和10.81 kJ·mol^-1,撞击和摩擦感度分别降低20%和8%;相同配方下药浆黏度降低41%~45%,药柱密度提高0.6%~3.9%,爆速提高1%~3%,冲击波感度降低10%~14%,表现出更优的工艺性能、爆轰性能及安全性能。  相似文献   

13.
为实现流程工业制造全流程达到整体最优,以典型高能炸药黑索金(RDX)制造过程为代表,结合生产工 艺特点构建数字化车间。从车间工艺流程、运行管控、安全管控、数据管理及应用分析等方面开展数字化车间构建 技术研究。在已有技术、生产工艺的基础上,抽取出与高能炸药智能制造数字化车间相关的共性和专用技术,并对 其应用到的关键技术实施方法进行阐述。结果表明:数字化车间的建立能实现车间生产全流程信息感知,快速响应 制造过程内外部变化,在保障RDX 产品的产量和质量的同时,提高制造过程中的安全程度。  相似文献   

14.
RDX与D-RDX基PBX炸药撞击安全性研究   总被引:1,自引:0,他引:1  
花成  舒远杰  吴博  黄明  李涛  傅华 《含能材料》2010,18(5):497-500
为深入研究撞击作用下RDX/D-RDX为基高聚物粘结炸药(PBX)的安全性差异,利用Hopkinson实验原理,参照撞击感度试验方法设计了一种能测试炸药试样在较高速度撞击下的动态力学变化历程及撞击安全性的试验方法。试验结果表明,以RDX/D-RDX为基PBX炸药的撞击安全性和在撞击加载下的反射波幅值、脉宽有较大差异。运用LS-DYNA程序进行数值计算,所得结果与实验结论基本相符。  相似文献   

15.
溶胶-凝胶法制备RDX/SiO2传爆药薄膜技术研究   总被引:2,自引:1,他引:1       下载免费PDF全文
通过在二氧化硅(SiO_2)溶胶向凝胶转变过程中,依次加入黑索今(RDX)的丙酮-N,N-二甲基酰胺(DMF)混合溶液和氟橡胶(FPM_(2602))的乙酸乙酯溶液,采用提拉法和手工旋转涂抹法制备了白色半透明状质量分数为80%的RDX/SiO_2传爆药薄膜.结果表明,当正硅酸乙酯(TEOS)和乙醇摩尔比为1:4时,随醇水摩尔比的适当减小,膜的韧性降低并且成膜后RDX粒径变小;溶胶在60℃陈化时,随陈化时间增加,溶胶粘度由3 Pa-s增至凝胶点时的13 Pa·s,此时涂膜,所得薄膜表面平整.扫描电镜表明,在薄膜内部,300~500 nm的球状SiO_2黏附在RDX表面,形成3~5μm且星块状的RDX/SiO:复合膜单元,是一种新型的膜状传爆药.  相似文献   

16.
采用差示扫描量热仪DSC和绝热加速量热仪ARC,对比研究了双基推进剂SF、改性双基推进剂GHQ和单质RDX的热分解过程,并分析评估了GHQ推进剂的热危害性。DSC实验结果表明:GHQ推进剂起始分解温度为182.4℃,热分解明显分为双基组分和RDX分解两个过程,分解峰温为202.2℃和240.4℃,分别与双基推进剂SF、单质RDX分解峰温接近,说明双基组分与RDX混合后作用不激烈。ARC实验结果表明:GHQ推进剂在最危险状态(即绝热条件)下的起始分解温度为135.3℃,绝热温升为1 197.5℃,tMR为15.9min,单位质量产生气体最大压力为15.8MPa·g~(-1)。研究结果表明:添加RDX后,GHQ推进剂发生热自燃可能性较双基推进剂SF稍有提高,热危害性大大增强。  相似文献   

17.
18.
付有  王彬彬  徐滨  廖昕 《含能材料》2017,25(2):161-166
为提高单基发射药(硝化棉/二硝基甲苯/邻苯二甲酸二丁酯/二苯胺,NC/DNT/DBP/DPA)的能量,在单基发射药中加入不同含量(5%、10%、15%、20%)、不同粒度(0.2,3.7,7.6,100.0μm)的黑索今(RDX),制备并得到改性单基发射药。通过密闭爆发器实验研究了RDX含量、粒度对改性单基发射药燃烧性能的影响规律。实验结果表明:在RDX粒度为7.6μm时,改性单基发射药的燃速随RDX含量的增加先降低再升高,在RDX含量为10%附近存在一个最小值;在50~p_(dpm)MPa(p_(dpm)为最大压力陡度所对应的压力值),改性单基发射药的燃速压力指数平均值均大于1。当RDX含量为5%时,改性单基发射药的燃速随RDX粒度的减小而减小;在50~p_(dpm)MPa,粒度为0.2,3.7μm的RDX改性单基发射药的燃速压力指数平均值均小于1,粒度为7.6,100.0μm的RDX改性单基发射药的燃速压力指数平均值均大于1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号