首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Final-stage sintering has been investigated in ultrahigh-purity Al2O3 and Al2O3that has been doped individually with 1000 ppm of yttrium and 1000 ppm of lanthanum. In the undoped and doped materials, the dominant densification mechanism is consistent with grain-boundary diffusion. Doping with yttrium and lanthanum decreases the densification rate by a factor of ˜11 and 21, respectively. It is postulated that these large rare-earth cations, which segregate strongly to the grain boundaries in Al2O3, block the diffusion of ions along grain boundaries, leading to reduced grain-boundary diffusivity and decreased densification rate. In addition, doping with yttrium and lanthanum decreases grain growth during sintering. In the undoped Al2O3, surface-diffusion-controlled pore drag governs grain growth; in the doped materials, no grain-growth mechanism could be unambiguously identified. Overall, yttrium and lanthanum decreases the coarsening rate, relative to the densification rate, and, hence, shifted the grain-size-density trajectory to higher density for a given grain size. It is believed that the effect of the additives is linked strongly to their segregation to the Al2O3grain boundaries.  相似文献   

2.
In order to explore methods for improving the sintering property of yttria face coat to prevent the thermal spalling phenomenon during investment casting, without significantly increasing the cost,the effects of electrode types in the vacuum furnace and the doping of oxides on the sintering character of yttria face coat at high temperature have been investigated. By contrast with the results of traditionally sintered pure yttria face coat at 1700?℃, the promotion in densification of the yttria face coat of the mould shells by doping La2O3 +?ZrO2 is the most efficacious, whereas doping CeO2 +?ZrO2 can impede the densification of the yttria face coat. After sintering at 2000?℃ in a vacuum furnace with graphite electrodes, the yttria face coat can get complete densification, while the yttria face coat shows incomplete densification in a furnace with tungsten electrodes, whatever doped or undoped. But yttria grains in the face coats doped with oxides are larger than those in the un-doped one. Both CaO?+?ZrO2 doping and MgO + ZrO2 doping can make greater acceleration of the yttria grain growth than La2O3 +?ZrO2 doping and CeO2 +?ZrO2 doping.  相似文献   

3.
Sintering behavior and densification mechanisms of NiO-doped YSZ were investigated by using a dilatometer, combined with XRD, SEM and HRTEM characterization. The solubility of NiO in YSZ is found to be 0.5-1 mol% at 1500 °C by XRD, and TEM reveals that, beyond solubility limit, the undissolved NiO exists in the form of nano and/or micro-sized crystals depending on the doping amount. The sintering model was used to address the enhanced sintering of YSZ as a result of small additions of NiO. Lattice diffusion is examined to be the rate-determining mechanism for the intermediate-stage sintering of both undoped and NiO-doped YSZ. However, the apparent activation energy for densification of YSZ is reduced by ∼70 kJ/mol upon NiO doping. It is concluded that the dissolved NiO contributes to the lowering of the activation energy and therefore the enhanced lattice diffusivity.  相似文献   

4.
For various systems two-stage sintering has been reported as a successful way of suppressing the grain growth in the final stage of densification of polycrystalline ceramics. Our previous results on two-stage sintering of high purity submicrometre polycrystalline alumina indicate limited efficiency of the process with respect to suppression of grain growth. The present work deals with the influence of deliberate additions of various metal oxides (500 ppm of MgO, Y2O3 or ZrO2) whose grain growth retarding effect in conventional sintering has been well documented, on two-stage sintering of submicrometre alumina ceramics. The addition of MgO was observed to enhance densification. Addition of yttria and zirconia impaired densification, but addition of all three dopants resulted in suppression of the grain growth and microstructure refinement in comparison to undoped alumina.  相似文献   

5.
Densification of nanocrystalline cubic yttria (nc-Y2O3) powder, with 18 nm crystal size and 1 wt% LiF as a sintering additive was investigated. Specimens were fabricated by spark plasma sintering at 100 MPa, within the temperature range of 700-1500 °C. Sintering at 700 °C for 5 and 20 min resulted in 95% and 99.7% dense specimens, with an average grain size of 84 and 130 nm, respectively. nc-Y2O3 without additive was only 65% dense at 700 °C for 5 min. The presence of LiF at low sintering temperatures facilitated rapid densification by particle sliding and jamming release. Sintering at high temperatures resulted in segregation of LiF to the grain boundaries and its entrapment as globular phase within the fast growing Y2O3 grains. The sintering enhancement advantage of LiF was lost at high SPS temperatures.  相似文献   

6.
Single stage densification of magnesia—alumina compacts were studied with MgO to Al2O3 molar ratios 1:1 (stoichiometric spinel), 2:1 (magnesia rich spinel) and 1:2 (alumina rich spinel). Attritor milling has been adopted to produce variation in fineness. Milling greatly improved the densification. Densification was found to be easier for the magnesia rich composition and difficult for the alumina rich one. X-ray diffraction patterns showed the expected phases in stoichiometric and magnesia rich spinel. Alumina rich composition showed no free corundum phase on sintering at 1650°C and only spinel phase marks the complete solid solution of excess alumina in spinel at this composition. EDAX analysis also supports the event and also reflects that the impurities are mainly present at the grain boundaries.  相似文献   

7.
Mullite ceramics were fabricated at relatively low sintering temperatures (1500-1550 °C) from recycled flyash and bauxite with MgO addition as raw materials. The densification behavior was investigated as function of magnesia content and sintering temperature. The results of thermal analysis, bulk density and pore structure indicate that MgO addition effectively promoted sintering, especially above 1450 °C. Due to the presence of large interlocked elongated mullite crystals above 1450 °C, associated with enhanced densification, an improvement in mechanical strength was obtained for the samples containing magnesia. The addition of magnesia slightly decreases the LTEC at 1300 °C due to the formation of low-expansion α-cordierite, but slightly increases the LTEC above 1400 °C due to the formation of high expansion corundum and MgAl2O4 spinel.  相似文献   

8.
Densification studies of 8 mol% yttria stabilized zirconia ceramics were carried out by employing the sintering techniques of conventional ramp and hold (CRH), spark plasma sintering (SPS), microwave sintering (MWS) and two-stage sintering (TSS). Sintering parameters were optimized for the above techniques to achieve a sintered density of >99% TD. Microstructure evaluation and grain size analysis indicated substantial variation in grain sizes, ranging from 4.67 μm to 1.16 μm, based on the sintering methodologies employed. Further, sample was also sintered by SPS technique at 1425 °C and grains were intentionally grown to 8.8 μm in order to elucidate the effect of grain size on the ionic conductivity. Impedance spectroscopy was used to determine the grain and grain boundary conductivities of the above specimens in the temperature range of RT to 800 °C. Highest conductivity of 0.134 S/cm was exhibited by SPS sample having an average grain size of 1.16 μm and a decrease in conductivity to 0.104 S/cm was observed for SPS sample with a grain size of 8.8 μm. Ionic conductivity of all other samples sintered vide the techniques of TSS, CRH and MWS samples was found to be ∼0.09 S/cm. Highest conductivity irrespective of the grain size of SPS sintered samples, can be attributed to the low densification temperature of 1325 °C as compared to other sintering techniques which necessitated high temperatures of ∼1500 °C. The exposure to high temperatures while sintering with TSS, CRH and MWS resulted into yttria segregation leading to the depletion of yttria content in fully stabilized zirconia stoichiometry as evidenced by Energy Dispersive Spectroscopy (EDS) studies.  相似文献   

9.
Grain growth in Mn-doped ZnO   总被引:5,自引:0,他引:5  
Grain growth in ZnO doped with 0.1 to 1.2 mol% Mn was investigated during isothermal sintering from 1100 to 1300°C in air. Mn doping promotes the grain growth of ZnO during sintering, and this effect is enhanced by increasing the Mn doping level. The grain growth exponent is reduced from 3.4, for undoped ZnO, to 2.4, for ZnO doped with 1.2 mol% Mn, while the apparent activation energy for grain growth is reduced from 200 kJ/mol, for undoped ZnO, to 100–150 kJ/mol, for Mn-doped ZnO. Electrical measurements suggest that an excess of Mn probably exists at grain boundaries, either as a very thin second phase or as an amorphous film, which could benefit grain boundary diffusion, therefore promoting the grain growth of ZnO.  相似文献   

10.
The advantage of certain amounts of MgO addition in alumina sintering has been realized, and it is common practice. In an attempt to understand the role of MgO in the presence of CaO in commercial-grade alumina, grain-boundary segregation of Ca was investigated by scanning Auger electron microprobe (SAM) using an ultrapure alumina after controlled doping of CaO and/or MgO. The commercial-grade alumina, which usually contains a small amount of CaO, is difficult to sinter to high density. The pure alumina composition (<99.999%) gives "clean" boundaries when it is sintered under "clean" conditions. As the powder was doped with 100 ppm of CaO and sintered at 1300° to 1500°C, all of the grain boundaries were enriched by Ca as observed by others. However, it was also discovered that some of the grain boundaries are enriched by an exceptionally high concentration of Ca. Such a large variation of Ca contents depending on the grain-boundary facets disappeared when samples were codoped with small amounts of MgO. The results suggest that MgO plays a beneficial role in controlling the anisotropic segregation of Ca to various interfaces including grain boundaries and pore surfaces during sintering of alumina. MgO thus enhances chemical homogeneity of commercial-grade alumina.  相似文献   

11.
Different types of dense stoichiometric and nonstoichiometric magnesium aluminate (MgAl2O4) spinel (MAS) ceramics were prepared following a conventional double-stage firing process using different commercially available alumina and magnesia raw materials. Stoichiometric, magnesia-rich, and alumina-rich spinels were sintered at 1500°–1800°C for 1–2.5 h. The influence of the different processing parameters (average particle size, degree of spinel phase, green density, mass of the powder compact, sintering temperature, holding time at the peak temperature, and starting composition) on the densification behavior of MAS was assessed by measuring the bulk density, apparent porosity, and water absorption capacity, and microstructural observations. Most of the MAS compositions tested exhibited excellent sintering properties.  相似文献   

12.
《Ceramics International》2019,45(14):17354-17362
Yb:YAG (yttrium aluminum garnet) transparent ceramics were fabricated by the solid-state method using monodispersed spherical Y2O3 powders as well as commercial Al2O3 and Yb2O3 powders. Pure YAG phase was obtained at low temperature due to homogeneous mixing of powders. Under the same sintering conditions, the Yb:YAG ceramics with different doping contents of Yb3+ had similar morphologies and densification rates. After being sintered at 1700 °C in vacuum, the ceramic samples had high transparencies. The Yb:YAG ceramics doped with 0.5 wt% SiO2 formed Y–Si–O liquid phase and nonstoichiometric point defects that enhanced sintering. Compared with Nd doping, Yb doping hardly affected the YAG grain growth, sintering densification or optical transmittance, probably because Yb3+ easily entered the YAG lattice and had a high segregation coefficient.  相似文献   

13.
Abnormal Grain Growth in Alumina: Synergistic Effects of Yttria and Silica   总被引:4,自引:0,他引:4  
Abnormal grain growth without strong anisotropy or faceting of the grains has been observed in high-purity yttria-doped alumina specimens, often starting at the surface and spreading right through the bulk at higher sintering temperatures. This appears to occur because of an interaction between Si contamination from sintering and the yttria doping; no such effect is seen for undoped samples. Similar microstructures were observed after deliberate Y/Si codoping. Analytical STEM showed that some grain boundaries bordering on large grains contained more Si than Y. HRTEM and diffuse dark-field imaging revealed thin (0.5–0.9 nm) disordered layers at some boundaries bordering large grains. It appears that Si impurities are accumulating at some boundaries and together with the Y inducing a grain boundary structural transformation that accounts for the dramatically increased mobility of these boundaries.  相似文献   

14.
Alumina and alumina-based "nanocomposites" with 2 and 5 vol% silicon carbide and varying amounts of yttria (0–1.5 wt%) have been prepared by pressureless sintering in the temperature range 1450°–1650°C. The effects of composition and sintering temperature on density and microstructure are reported. Yttria inhibited sintering in alumina, but enhanced the sinterability of the nanocomposites. It also induced abnormal grain growth in both alumina and nanocomposites, but strongly bimodal grain size distributions could be prevented by careful choice of the composition and the sintering temperature. Fully dense (>99%), fine-grained alumina–5 vol% SiC–1.5 wt% yttria nanocomposites were produced from uniaxially pressed powders with a yttria content of 1.5 wt% and a sintering temperature of 1600°C. Reasons for this behavior are discussed, and it is suggested that the enhancement of sintering in the alumina–SiC materials is because of the reaction of silica on the surface of the silicon carbide particles with alumina, yttria, and possibly magnesia, modifying the grain boundary composition, resulting in enhanced grain boundary diffusion. scanning transmission electron microscopy/energy-dispersive X-ray data show that such co-segregation does occur in the yttria-containing nanocomposites.  相似文献   

15.
The effects of a large number of sintering aids for the densification of magnesia were examined. Al2O3, BaO, Fe2O3, P2O5, SiO2, TiO2, Y2O3 and ZrO2 are effective for the sintering of CVD-MgO powders at low doping levels. The effects of TiO2 and ZrO2 are significant. Heavy doping is harmful for densification. The eight oxides above are also effective for the sintering of seawater MgO, but the degree of effectiveness is smaller than for CVD-MgO. In the doping of BaO, P2O5, SiO2 and TiO2, which form eutectic liquids with MgO below 1600°C, there is an optimum firing temperature for densification.

Vickers hardness of doped MgO is proportional to the relative density and is unaffected by doping. Corrosion resistance of MgO ceramics for liquid PbO is also unaffected by dopants, except for P2O5.  相似文献   


16.
Densification and grain growth of alumina were studied with yttria or yttrium-aluminum garnet (YAG) additives at the relatively low temperatures of 1200°–1300°C. Yttria doping was found to inhibit densification and grain growth of alumina at 1200°C and, depending on dopant level, had a lesser effect at 1300°C. At 1200°C, yttria inhibits densification more than it hinders grain growth. The rate of grain growth increases faster with temperature than the rate of densification. Alumina-YAG particulate composites were difficult to sinter, yielding relative densities of only 65% and 72% after 100 h at 1200° and 1300°C, respectively. Pure YAG compacts exhibited essentially no densification for times up to 100 h at 1300°C.  相似文献   

17.
Combustion reaction plus quick pressing was a developing technique that used the Joule heating effect of combustion reaction to sinter ceramics, and allows very high heating rate, short soaking duration and high pressure for densification of ceramics. By taking advantages of the particular conditions of this method, pure yttria ceramics with a relative density of 98.5% and an average grain size of 50 nm were obtained at 1620 K and 170 MPa. Moreover, the investigation on the grain growth of sintered yttria was carried out by analyzing the microstructure evolutions and responsible mechanisms. The combined effect of the ultra-high heating rate and the high pressure applied on compact at the peak temperature was effective in suppressing particle coarsening and enhancing densification. Besides, under the decreased sintering temperature and soaking duration, the retained nanostructure assisted to inhibit final-stage grain growth while without impeding the further densification of nanocrystalline ceramics.  相似文献   

18.
The effect of grain size of magnesia and its content as well as spark plasma sintering conditions on the density, grain size, strength, hardness, and toughness of alumina was investigated. Spark plasma sintering conditions were optimized at 1150°C/5 min/175°C/min. Addition of 100 nm magnesia gave higher density levels (99.5%), while better strength (600 MPa), hardness (25 GPa), and fracture toughness (4.5 MPa·m1/2) were obtained with 15 nm magnesia. The good strength and hardness is attributed to the submicrometer grain size of the matrix, and the improved toughness to the presence of Mg-rich nanoparticles and nanopores at grain boundaries.  相似文献   

19.
The densification behavior and microstructural development of high-purity Al2O3 doped with different levels of Nd2O3 were investigated. Dopant levels ranged from 100–1000 ppm (Nd/Al atomic ratio). The densification behavior of the doped powders was studied using constant heating rate dilatometry. It was found that neodymium additions inhibited densification, with a corresponding increase in the apparent activation energy. The level of grain-boundary segregation was studied using high-resolution analytical electron microscopy. At dilute concentrations, the degree of neodymium grain-boundary excess was found to be consistent with a simple geometrical model relating this quantity to the overall dopant concentration and average grain size. For certain combinations of dopant level and heat treatment, supersaturation of the grain boundaries was observed, which was found to correlate with the onset of abnormal grain growth. Possible explanations for this behavior are discussed.  相似文献   

20.
The influence of various dopants (500 ppm MgO and Y2O3; 250 ppm ZrO2) on sintering of fine-grained alumina ceramics was evaluated by high-temperature dilatometry. The apparent activation energy of sintering was estimated with the help of Master Sintering Curve and a model proposed by Wang and Raj. The densification kinetics was controlled by at least two mechanisms operating at low (higher activation energy) and high (lower activation energy) densities. Good agreement between the activation energies calculated with both models was observed for low as well as for high densities. The lowest value of activation energy exhibited undoped alumina; the addition of MgO resulted in slight increase of the activation energy. Y2O3 and ZrO2 significantly inhibited the densification, which was reflected in the higher sintering activation energies. The low activation energies in the final sintering step indicates the importance of proper choice of sintering temperature, namely in the two-step sintering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号