首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The reliability of thin gate oxides grown by rapid thermal oxidation in O2 followed by one and two step postoxidation annealing (POA) in N2 was studied. The one step POA was carried out by switching O2 into N2 immediately after oxidation without changing temperature, while the two step POA was cooled down first and subsequently heated to the same temperature as oxidation in N2. It was experimentally observed that the oxide thickness increases significantly with the POA time in one step POA, while the oxide thickness shows very little change during two step POA. The interfacial properties and the oxide breakdown endurance can be improved by the two step POA. Also, the radiation hardness of oxide is less degraded by the two step POA than by one step POA. The effect of oxide thickness variation due to POA is chiefly responsible for the observation and is important to thin gate oxides  相似文献   

2.
Stress-induced leakage current (SILC) is studied in ultrathin (~50 Å) gate oxides grown in N2O or O2 ambient, using rapid thermal processing (N2O oxide or control oxide, respectively). MOS capacitors with N2O oxides exhibit much suppressed SILC compared to the control oxide for successive ramp-up, constant voltage DC, and AC (bipolar and unipolar) stresses. The mechanism for SILC is discussed, and the suppressed SILC in N2O oxide is attributed to suppressed interface state generation due to nitrogen incorporation at the Si/SUO2 interface during N2O oxidation  相似文献   

3.
It has been reported that high-temperature (~1100°C) N2 O-annealed oxide can block boron penetration from poly-Si gates to the silicon substrate. However, this high-temperature step may be inappropriate for the low thermal budgets required of deep-submicron ULSI MOSFETs. Low-temperature (900~950°C) N2O-annealed gate oxide is also a good barrier to boron penetration. For the first time, the change in channel doping profile due to compensation of arsenic and boron ionized impurities was resolved using MOS C-V measurement techniques. It was found that the higher the nitrogen concentration incorporated at Si/SiO2 interface, the more effective is the suppression of boron penetration. The experimental results also suggest that, for 60~110 Å gate oxides, a certain amount of nitrogen (~2.2%) incorporated near the Si/SiO2 interface is essential to effectively prevent boron diffusing into the underlying silicon substrate  相似文献   

4.
In this paper, we investigate the onset of boron penetration at the P+-poly/gate oxide interface. It is found that conventional detection methods such as shifts in flatband voltage or threshold voltage (Vt) and charge-to-breakdown (QBD) performance in accumulation mode failed to reveal boron species near this interface. On the contrary, under constant current stressing with inversion mode bias conditions, significantly lower QBD and large Vt shift have been observed due to boron penetration near the P+-poly/gate oxide interface. These results suggest that onset of boron penetration at the P+ -poly/gate oxide interface does not alter fresh device characteristics, but it induces severe reliability degradation for the gate oxide. Tradeoffs of boron penetration and poly depletion are also studied in this work with different combinations of polysilicon thickness, BF2 implant energy and dose, and the post-implant RTA temperature  相似文献   

5.
Nitridation of stacked poly-Si gates by inductively coupled N2 plasma (ICNP) treatment has been shown to suppress boron penetration and improve gate oxide integrity. The ICNP treatments on the stacked poly-Si layers create nitrogen-rich layers not only between the stacked poly-Si layers but also in the gate oxide after post implant anneal, thus resulting in effective retardation of boron diffusion. In addition, positioning of ICNP treatment closer to gate oxides leads to higher nitrogen peaks in the gate oxide region, resulting in further suppression of boron penetration and improvement of gate oxide reliability  相似文献   

6.
Effects of oxide growth temperature on time-dependent dielectric breakdown (TDDB) characteristics of thin (115 Å) N2O-grown oxides are investigated and compared with those for conventional O2-grown SiO2 films with identical thickness. Results show that TDDB characteristics of N2O oxides are strongly dependent on the growth temperature and, unlike conventional SiO2, TDDB properties are much degraded for N 2O oxides with an increase in growth temperature. Large undulations at the Si/SiO2 interface, caused by locally retarded oxide growth due to interfacial nitrogen, are suggested as a likely cause of degradation of TDDB characteristics in N2O oxides grown at higher temperatures  相似文献   

7.
Ultrathin (~1.9 nm) nitride/oxide (N/O) dual layer gate dielectrics have been prepared by the remote plasma enhanced chemical vapor deposition (RPECVD) of Si3N4 onto oxides. Compared to PMOSFET's with heavily doped p+-poly-Si gates and oxide dielectrics, devices incorporating the RPECVD stacked nitrides display reduced tunneling current, effectively no boron penetration and improved interface characteristics. By preventing boron penetration into the bulk oxide and channel region, gate dielectric reliability and short channel effects are significantly improved. The hole mobility in devices with N/O dielectrics with equivalent oxide thickness between 1.8 nm and 3.0 nm is not significantly degraded. Because nitrogen is transported to the substrate/dielectric interface during post-deposition annealing, degradation of mobility during hot carrier stressing is significantly reduced for N/O devices. Compared with oxide, the tunneling current for N/O films with ~1.9 nm equivalent oxide thickness is lower by about an order of magnitude due to the larger physical thickness. Suppression of boron transport in nitride layers is explained by a percolation model in which boron transport is blocked in sufficiently thick nitrides, and is proportional to the oxide fraction in oxynitride alloys  相似文献   

8.
The penetration of boron into and through the gate oxides of PMOS devices which employ p+ doped polysilicon gates is studied. Boron penetration results in large positive shifts in VFB , increased PMOS subthreshold slope and electron trapping rate, and decreased low-field mobility and interface trap density. Fluorine-related effects caused by BF2 implantations into the polysilicon gate are shown to result in PMOS threshold voltage instabilities. Inclusion of a phosphorus co-implant or TiSi2 salicide prior to gate implantation is shown to minimize this effect. The boron penetration phenomenon is modeled by a very shallow, fully-depleted p-type layer in the silicon substrate close to the SiO 2/Si interface  相似文献   

9.
AC hot-carrier effects in n-MOSFETs with thin (~85 Å) N2O-nitrided gate oxides have been studied and compared with control devices with gate oxides grown in O2. Results show that furnace N2O-nitrided oxide devices exhibit significantly reduced AC-stress-induced degradation. In addition, they show weaker dependences of device degradation on applied gate pulse frequency and pulse width. Results suggest that the improved AC-hot-carrier immunity of the N2O-nitrided oxide device may be due to the significantly suppressed interface state generation and neutral electron trap generation during stressing  相似文献   

10.
The performance and reliability of p-channel MOSFETs utilizing ultrathin (~62 Å) gate dielectrics grown in pure N2O ambient are reported. Unlike (reoxidized) NH3-nitrided oxide devices, p-MOSFETs with N2O-grown oxides show improved performance in both linear and saturation regions compared to control devices with gate oxides grown in O2. Because both electron and hole trapping are suppressed in N2O-grown oxides, the resulting p-MOSFETs show considerably enhanced immunity to channel hot-electron and -hole-induced degradation (e.g., hot-electron-induced punchthrough)  相似文献   

11.
MOS characteristics of ultrathin gate oxides prepared by furnace oxidizing Si in N2O have been studied. Compared to control oxides grown in O2, N2O oxides exhibit significantly improved resistance to charge trapping and interface state generation under hot-carrier stressing. In addition, both charge to breakdown and time to breakdown are improved considerably. MOSFETs with N2O gate dielectrics exhibit enhanced current drivability and improved resistance to gm degradation during channel hot-electron stressing  相似文献   

12.
Maintaining tight threshold voltage (VT) control for a low-voltage CMOS process is critical due to the large impact of VT on circuit performance at low power supply voltages. In this paper, PMOS VT was shown to be sensitive to poly gate thickness and BF2+ source/drain implant energy. This data helped identify boron penetration as a prime contributor to PMOS threshold voltage variation. SIMS measurements were used to investigate boron diffusion through the poly gate at various stages in the process flow. These SIMS profiles pointed to the low-temperature thermal cycle of the nitride spacer deposition as a key step which influenced the amount of boron penetration and thus the final device threshold voltage. Experimental evidence shows that the temperature gradient across the nitride spacer deposition furnace causes a variable amount of boron penetration resulting in a large variation in PMOS VT. We adopted a process flow change which virtually eliminated boron penetration and significantly reduced the sensitivity of the devices to manufacturing variations. Threshold voltage variation was reduced by a factor of two  相似文献   

13.
The authors report that the boron penetration through the thin gate oxide into the Si substrate does not only cause a large threshold voltage shift but also induces a large degradation in the Si/SiO2 interface. An atomically flat Si/SiO2 interface can be easily obtained by using a stacked-amorphous-silicon (SAS) film as the gate structure for p+ poly-Si gate MOS devices even with the annealing temperature as high as 1000°C  相似文献   

14.
High-performance inversion-type enhancement-mode n-channel In0.53Ga0.47As MOSFETs with atomic-layer-deposited (ALD) Al2O3 as gate dielectric are demonstrated. The ALD process on III-V compound semiconductors enables the formation of high-quality gate oxides and unpinning of Fermi level on compound semiconductors in general. A 0.5-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 8 nm shows a gate leakage current less than 10-4 A/cm2 at 3-V gate bias, a threshold voltage of 0.25 V, a maximum drain current of 367 mA/mm, and a transconductance of 130 mS/mm at drain voltage of 2 V. The midgap interface trap density of regrown Al2O3 on In0.53Ga0.47As is ~1.4 x 1012/cm2 ldr eV which is determined by low-and high-frequency capacitance-voltage method. The peak effective mobility is ~1100 cm2 / V ldr s from dc measurement, ~2200 cm2/ V ldr s after interface trap correction, and with about a factor of two to three higher than Si universal mobility in the range of 0.5-1.0-MV/cm effective electric field.  相似文献   

15.
Previously, we proposed n+-p+ double-gate SOI MOSFET's, which have n+ polysilicon for the back gate and p+ polysilicon for the front gate to enable adjustment of the threshold voltage, and demonstrated high speed operation. In this paper, we establish analytical models for this device, This transistor has two threshold voltages related to n+ and p+ polysilicon gates: Vth1 and Vth2, respectively. V th1 is a function of the gate oxide thickness tOx and SOI thickness tSi and is about 0.25 V when tOx/tSi=5, while Vth2 is insensitive to tOx and tSi and is about 1 V. We also derive models for conduction charge and drain current and verified their validity by numerical analysis. Furthermore, we establish a scaling theory unique to the device, and show how to design the device parameters with decreasing gate length. We show numerically that we can design sub 0.1 μm gate length devices with an an appropriate threshold voltage and an ideal subthreshold swing  相似文献   

16.
This paper presents a study of the impact of gate-oxide N2 O anneal on CMOSFET's characteristics, device reliability and inverter speed at 300 K and 85 K. Two oxide thicknesses (60 and 110 Å) and five N2O anneal conditions (900~950°C, 5~40 min) plus nonnitrided process and channel lengths from 0.2 to 2 μm were studied to establish the correlation between the nitrogen concentration at Si/SiO2 interface and the relative merits of the resultant devices. We concluded that one simple post-oxidation N2O anneal step can increase CMOSFET's lifetime by 4~10 times, effectively suppress boron penetration from the P+ poly-Si gate of P-MOSFET's without sacrificing CMOS inverter speed. We also found that the benefits in terms of the improved interface hardness and charge trapping characteristic still exist at cryogenic temperature. All these improvements are found to be closely correlated to the nitrogen concentration incorporated at the Si/SiO2 interface. The optimal N2O anneal occurs somewhere at around 2% of nitrogen incorporation at Si/SiO2 interface which can be realized by annealing 60~110 Å oxides at 950°C for 5 min or 900°C for 20 min  相似文献   

17.
Poly-Si0.8Ge0.2-and poly-Si-gated PMOS capacitors with very thin gate oxides were fabricated. Boron penetration and poly-gate depletion effects (PDE) in these devices were both analyzed. Observations of smaller flat-band voltage shift and superior gate oxide reliability suggest less boron penetration problem in poly-Si 0.8Ge0.2-gated devices. Higher dopant activation rate, higher active dopant concentration near the poly/SiO2 interface and therefore improved PDE were also found in boron-implanted poly-Si0.8Ge0.2-gated devices as compared to poly-Si-gated devices. A larger process window therefore exists for a poly-Si0.8Ge0.2 gate technology with regard to the tradeoff between boron penetration and poly-gate depletion  相似文献   

18.
The effect of nitrogen (N14)implant into dual-doped polysilicon gates was investigated. The electrical characteristics of sub-0.25-μm dual-gate transistors (both p- and n-channel), MOS capacitor quasi-static C-V curve, SIMS profile, poly-Si gate Rs , and oxide Qbd were compared at different nitrogen dose levels. A nitrogen dose of 5×1015 cm-2 is the optimum choice at an implant energy of 40 KeV in terms of the overall performance of both p- and n-MOSFETs and the oxide Qbd. The suppression of boron penetration is confirmed by the SIMS profiles to be attributed to the retardation effect in bulk polysilicon with the presence of nitrogen. High nitrogen dose (1×1016 cm-2) results in poly depletion and increase of sheet resistance in both unsilicided and silicided p+ poly, degrading the transistor performance. Under optimum design, nitrogen implantation into poly-Si gate is effective in suppressing boron penetration without degrading performance of either p- or n-channel transistors  相似文献   

19.
The use of aluminum oxide as the gate insulator for low temperature (600°C) polycrystalline SiGe thin-film transistors (TFTs) has been studied. The aluminum oxide was sputtered from a pure aluminum target using a reactive N2O plasma. The composition of the deposited aluminum oxide was found to be almost stoichiometric (i.e., Al2O3), with a very small fraction of nitrogen incorporation. Even without any hydrogen passivation, good TFT performance was measured an devices with 50-nm-thick Al2O3 gate dielectric layers. Typically, a field effect mobility of 47 cm2/Vs, a threshold voltage of 3 V, a subthreshold slope of 0.44 V/decade, and an on/off ratio above 3×105 at a drain voltage of 0.1 V can be obtained. These results indicate that the direct interface between the Al2 O3 and the SiGe channel layer is sufficiently passivated to make Al2O3 a better alternative to grown or deposited SiO2 for SiGe field effect devices  相似文献   

20.
In this paper, a technique to use Ar ion-implantation on the p+α-Si or poly-Si gate to suppress the boron penetration in p+ pMOSFET is proposed and demonstrated. An Ar-implantation of a dose over 5×1015 cm-2 is shown to be able to sustain 900°C annealing for 30 min for the gate without having the underlying gate oxide quality degraded. It is believed to be due to gettering of fluorine, then consequently boron, by the bubble-like defects created by the Ar implantation in the p+ gate region to reduce the B penetration. Excellent electrical characteristics like dielectric breakdown (Ebd), interface state density (Dit), and charge-to-breakdown (Qbd) on the gate oxide are obtained. The technique is compatible to the present CMOS process. The submicron pMOSFET fabricated by applying this technique exhibit better subthreshold characteristics and hot carrier immunity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号