首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Field trials were conducted in the Philippines and India during 1989 and 1990 seasons to study comparative yield responses of transplanted rice (Oryza sativa L.) to pillow-shaped urea briquettes (UB) deep placed by an applicator (prototype developed by IFDC) and by hand immediately after transplanting. The applicator-placed UB consistently increased grain yields over the split-applied prilled urea, and the additional yields ranged from 0.23 to 1.48t ha–1 (5 to 83%) for 25 to 63 kg N ha–1. Agronomic responses of transplanted rice to the UB placed by the applicator and by hand were statistically equal. Modified rice hill spacing may be considered as a requirement for efficient use of the applicator. The results demonstrate that with the UB applicator it is possible to deep place UB mechanically and achieve the agronomic efficiency that is achieved by hand deep placement of the UB.  相似文献   

2.
A field study was conducted on a sandy clay soil (Entisol) in India to examine urea briquettes (UB) for lowland rice during 1986 and 1987. Grain yield was significantly greater for UB than a split application of prilled urea. At equal rates of N application, a spacing of 30 cm between two UBs was significantly better than 60 to 90 cm spacing. Two applications (10 DAT and at panicle initiation) of UB was no better than a single application (10 DAT). Placement of UB at 3–4 cm depth was significantly better than its surface application or placement at 0–1 cm depth.  相似文献   

3.
Rice is the most important food crop in the developing countries of Asia, where population densities are very high and overall dietary levels are not adequate. In south and southeast Asia, rainfed and irrigated transplanted rice occupies nearly two–thirds of the rice-growing area and produces more than 80% of the paddy rice. In these areas, prilled urea (PU) conventionally applied by farmers is very inefficiently used by transplanted rice largely because of serious losses (up to 60% of applied N) via NH3 volatilization, denitrification, leaching, and/or runoff. In order to minimize N loss, especially loss due to denitrification, historically the Japanese have used different ways of deep placing fertilizer N. In 1975, IFDC proposed use of supergranules of urea (USG) in place of mudballs containing urea fertilizer to achieve the same agronomic benefits as achieved through the Japanese concept of deeppoint placement of fertilizer N in transplanted rice. USG can be prepared by melt-type processes (pan granulation, falling curtain, and fluid bed) and briquetting (a special type of compaction). The latter process seems to be the most cost-effective viable alternative. Small-scale briquetting machines have been developed to produce urea bgriquettes (UB) at village level at a rate of 200–250 kg h?1. Basically, USG are large, discrete particles of ordinary urea [(NH2)2CO] containing 46% N as NH2 (amide form); their weights may vary from 1 to 2 g per particle. USG from melt granulation process are nearly spherical with a relatively smooth surface, while UB from briquetting will be pillow-shaped with broken edges. Placement of USG can be done efficiently by handafter conventional line transplanting (e.g., researcher's method or IFDC transplanting guide method) orduring line transplanting (e.g., IFDC dispenser method) at the rate of one USG near the center of each four rice hills to a 7–10 cm soil depth. The IFDC methods have been developed mainly for economically disadvantaged small rice farmers of developing countries, especially those who transplant rice at random in rainfed areas. Other alternative manual methods such as incorporation of broadcast USG, random deep placement of USG by hand before line transplanting, or the deep placement by foot before or after transplanting may be less labor intensive; however, their agronomic efficiency has been low and highly variable, and they therefore cannot be recommended to farmers. Various continuous operation-type applicators (prototypes) have been developed in the Philippines, India, and China for mechanical deep placement of USG in line-transplanted rice. A few prototypes have been found to be labor saving and agronomically efficient when tested on research farms. However, several design-related problems associated with their metering mechanisms, placement depths, closing of furrows at the placement sites, output per workday, and/or operators' comfort, etc., need to be solved. In short, continuous operation-type applicators that are affordable and still efficient for deep placement of UB are not yet available for use on farmers' fields where floodwater and soil conditions vary substantially. The noncontinuous operation-type UB applicator prototype developed by IFDC is not as labor saving as the continuous operation-type applicators. However, its proper use with adequate practice can help to minimize the drudgery and to save up to 40% of the labor required for the hand placement method. This completely manual UB applicator, made of polyvinyl chloride (PVC) is simple to use, lightweight, and affordable as well as agronomically efficient on farmers' fields. As a result of diffusive transport and cation exchange, typically steep concentration gradients (or spatial distribution patterns) of ammonium exist at the placement sites and eventually control the rate and duration of availability of USG-N to the rice plants. USGper se is not a slow-release nitrogen fertilizer but behaves like a slowly available nitrogen fertilizer. Because the deep-placed USG-N is well protected from various N loss mechanisms (except leaching) at the placement sites in soils and the spatial ammonium concentration gradients help to improve its plant availability, (1) uptake of N by rice plants (recovery) is significantly increased, (2) relatively smaller amounts of USG-N as nonexchangeable ammonium and/or immobilized organic N stay in soil, and (3) eventually N losses (gaseous and runoff) are markedly decreased. Thus, this practice is agronomically efficient as well as environmentally safe. However, this practice should not be used in permeable soil with coarse texture and low cation exchange capacity (CEC) because the high loss of USG-N via leaching will significantly decrease N uptake by the rice plants and eventually grain yield too. Several hundred field trials conducted by national and international institutions in south and southeast Asia since 1975 have demonstrated the agronomic superiority of the deep placement of USG vis-a-vis split applications of PU in transplanted rice. In general, paddy yield responses to deep-placed USG tend to be more curvilinear than do those to split-applied PU, thus resulting in higher agronomic efficiency for deep-placed USG in the lower range of N rates (30–80 kg N ha?1) than in the higher range of N rates (> 90 kg N ha?1). Depending on agroclimate and N rates used, in general deep-placed USG can help to provide a saving of urea fertilizer of up to 65% with an average of 33% and can help to increase grain yields up to 50% with an average of 15% to 20% over that with the same amount of split-applied N as PU, especially in the lower range of N rates. USGper se is not an efficient nitrogen fertilizer, but the proper deep placement of USG in transplanted rice makes it agronomically efficient. In using USG, consideration of the following factors should help to ensure agronomic efficiency of deep-placed USG and increase the chances of obtaining additional yield.
  1. Soil factors: Only use in soils having a low water percolation rate and a CEC ? 10 meq 100 g?1 soil.
  2. Plant factors: Give preference to short- to medium-duration dwarf rice varieties. For the longduration variety, basal deep-placed USG with a suitable topdressing of N as PU at panicle initiation stage would be helpful.
  3. Management factors: Apply basally 30 to 60 kg USG-N ha?1 using only USG of the right weight (1–2 g urea granule?1). Place one supergranule for each four hills at 7–10 cm soil depth using the right plant population and modified spacing. Use modified 20 cm × 15 cm or 20 cm × 20 cm spacing to facilitate efficient placement of USG by hand or machine. Workers should always use the so-called traffic lane of the modified spacing for performing all post-transplanting field operations. When deep placement of USG is delayed after transplanting, extra care is necessary to close the holes left at the placement sites. When puddling is inadequate or improper and deep placement is done during transplanting, some care may be required to close the holes.
A scheme of small-scale production of UB at village level, using briquetting machines and locally available PU as a feedstock, looks promising for developing countries. The estimated production cost of UB is likely to be up to 10% higher than that of PU. In general, the estimated incremental benefit/cost ratios of hand deep-placed USG in line-transplanted rice are quite attractive, usually ?5 for small rice farmers of developing Asia. Technological and agroeconomic considerations suggest that the practice of hand deep placement of USGduring or after line transplanting appears to be a right agrotechnology for the resource-scarce small rice farmers of developing countries for efficiently using affordable doses of nitrogen (30–60 kg UB-N ha?1) to significantly increase grain yields of transplanted rice. For other rice farmers who are not economically handicapped, who have access to irrigation, and who transplant rice in line and can afford to use high rates of N (> 90 kg N ha?1), it can be an attractive practice, if appropriate machines for deep placement of USG have been developed. Therefore, research and development work is needed to develop affordable, labor-saving, and agronomically efficient continuous operation-type applicators for mechanical deep placement of UB. The use of USG as a source of N for transplanted rice has potential in developing countries. What is now required is to first develop practical stepwise and region-specific agrotechnologies consisting of appropriate UB supply schemes and rice farming systems based on hand or machine deep placement of UB in line-transplanted rice for different regions in a given country. Then it will be necessary to adopt an appropriate diffusion strategy for transfer of the region-specific agrotechnologies to the rice farmers. In this extension activity, long-term commitment and integrated efforts are required by national government organizations as well as by nongovernment organizations and the fertilizer industry.  相似文献   

4.
The rapid rise in fertilizer prices over the past 2 years coupled with the notoriously low nutrient recovery of fertilizer by lowland rice as managed by farmers of most developing countries has prompted a re-examination of urea briquette agrotechnology that improves fertilizer use efficiency.Urea briquettes containing diammonium phosphate (UB-DAP) can be cost effectively produced using a portable fertilizer briquetter on a small scale (200 kg-1 h-1) at the village level and at a price affordable by small rice farmers. Their improved management consists of hand placement of properly sized (weight) UB-DAP (N:P = 4:1) per briquette for every four rice hills, and at 7–10 cm soil depth, on the day of or the day after transplanting using modified 20 × 20 cm spacing (25 hills m-2). This management is simple to adopt, saves up to 50% of the labor normally required for its conventional hand placement, and helps to reduce the lag period of spatial nonavailability of DAP-P to the rice plants. Results of several farmer-managed field trials conducted during the 1990–95 wet seasons in India demonstrate that the UB-DAP management makes the fertilizer agronomically more efficient, economically more attractive with less risk, and reduced losses of nutrients as compared with conventional use of prilled urea and single superphosphate. The fertilizer use offers women farmers a unique opportunity to play an important role in increasing rice productivity. The management of UB-DAP can be integrated with plant nutrient recycling and limited Gliricidia green manuring (an agroforestry approach). This integrated use of UB-DAP has the potential to increase rice production of small resource-poor rice farmers with less fertilizer and in sustainable manner in rainfed as well as irrigated transplanted rice ecoregions of developing countries, while protecting the environment. Therefore, the UB-DAP fertilizer can be an important NP source for transplanted rice in the 21st century.  相似文献   

5.
The efficacy of a prototype slow-release fertilizer, urea-rubber matrix (URM) was assessed under flooded rice conditions. URM cuboids of size 0.5 × 1.0 × 0.4 cm were applied in comparison with prilled urea at levels of 50, 130 and 200 kg N ha?1. URM was placed at the soil/solution interface in intimate association with rice seedlings whereas prilled urea was broadcast into the floodwater to simulate the normal application method of South East Asian farmers. URM cuboid sizes of 0.25 × 0.5 × 0.4 cm, 0.5 × 0.5 × 0.4 cm and 1.0 × 1.0 × 0.4 cm were similarly evaluated at a single rate of 130 kg N ha?1; a broadcast URM treatment was also included. Different methods of prilled urea application including deep placement and split application were also studied at a single rate of 130 kg N ha?1. It was found that the build-up of floodwater N (urea + NH 4 + ) from URM during the 13 days following application was almost negligible irrespective of level or method of application. This was thought to result in low losses of N through ammonia volatilization as shown by higher rice grain yields in comparison with prilled urea at all levels of application. Deep-placed urea gave a comparable grain yield to that of broadcast URM. There was no significant difference in grain yield between URM applied by placement and by broadcast, suggesting that URM can be effectively applied either in intimate association with rice seedlings or by broadcasting to the rice field before, or after, planting. An attempt to predict the release of urea from URM was made using a diffusion-based simulation model. It was found that the model underestimated the actual release of urea from URM within the rhizosphere, probably due to the extensive penetration by rice roots of the URM cuboids.  相似文献   

6.
A field experiment conducted for two years (1977 and 1978) at the Indian Agricultural Research Institute, New Delhi showed that yield and nitrogen uptake by rice was more in the case of medium duration (135 days) variety Improved Sabarmati than in the case of the short duration (105 days) variety Pusa-33. Highest yield and nitrogen uptake by rice was recorded when it was transplanted and lowest when rice was direct-seeded (drilled in moist soil). Broadcasting sprouted seeds on puddled seed bed gave yield and nitrogen uptake in between transplanting and direct-seeding and provides a reasonably acceptable method of planting. Rice responded well to nitrogen and the economic optimum dose was found to be 160–170 kg N ha–1. Urea briquettes gave the highest yield and nitrogen uptake by rice and was superior to sulphur-coated urea or neem-cake-coated urea with respect to N-uptake. All these new nitrogen fertilizers were superior to urea and therefore hold considerable promise in rice culture.  相似文献   

7.
Green manuring of rice with dhaincha (Sesbania aculeata) is widely practised under irrigated puddle-transplanted conditions. In flood-prone lowlands, the rice is established through direct seeding early in the season and flooding occurs after 1–2 months of crop growth following regular rains. The low yields are due to poor crop stands and difficulty in nitrogen management under higher depths of water. The effect of green manuring with dhaincha intercropped with direct-seeded rice vis-à-vis the conventional practice of incorporating pure dhaincha before transplanting was investigated under flood-prone lowland conditions (up to 50–80 cm water depth) at Cuttack, India. Treatment variables studied in different years (1992, 1994 and 1995) were: rice varieties of different plant heights, crop establishment through direct seeding and transplanting, varying length of periods before dhaincha incorporation, and urea N fertilizer levels. Dhaincha accumulated 80–86 kg N ha-1 in pure stand and 58–79 kg N ha-1 when intercropped with direct-seeded rice in alternate rows at 50 days of growth. The growth of rice improved after dhaincha was uprooted manually and buried in situ between the rice rows when water depth was 10–20 cm in the field. The panicle number was lower but the panicle weight was higher with dhaincha green manuring than with recommended level of 40 kg N ha-1 applied as urea. The grain yield was significantly higher with direct seeding than with transplanting due to high water levels (>60 cm) immediately after transplanting. Dhaincha manuring was at par with 40 kg N ha-1 as urea in increasing the yield of direct-seeded and transplanted crops. The highest yield of direct-seeded crop was obtained when 20 kg N ha-1 was applied at sowing and dhaincha was incorporated at 50 days of growth. The results indicate that green manuring of direct-seeded rice with intercropped dhaincha is beneficial for substituting urea fertilizer up to 40 kg N ha-1 and augmenting crop productivity under flood-prone lowland conditions.  相似文献   

8.
Experiments were conducted in paddy fields at Shiga and Chiba Prefectures to study the effects of controlled-release coated urea (N-LP100) on soil microbial biomass and N uptake of rice plants by the 15N-tracer technique, during one cropping season. Three field fertilizer treatments (Zero N: 0 kgN ha–1, 15N-LP100: 64 kg N ha–1 and 15NH4Cl: 100 kg N ha–1) were set-up in the Shiga field experiment. After transplanting in the paddy fields at Shiga and Kashiwa (Chiba), a number of rice hills with standard growth were selected randomly and enclosed by polyacryl-plastic frames designated as microplots. 15N-LP100 (64 kg N ha–1) was applied in the Shiga and Kashiwa microplot experiments and the Shiga field experiment as deep-side placement (5 cm away from rice hill and 5 cm soil depth). Total N uptake of rice plants was analyzed in the course of plant growth. In addition, soils from the field fertilizer treatment plots and microplots (divided into 11 blocks) were taken and analyzed for microbial biomass N (BN) and biomass 15N (B15N). The results indicated that; (1) Plant N uptake from basal-applied fertilizers at the end of the study in the Shiga field experiment was 71.9 and 26.0% for 15N-LP100 and 15NH4Cl, respectively. In the Kashiwa microplot experiment, plant N uptake from applied 15N-LP100 was 51.2% at 67 days after transplanting (DAT) (2) Throughout the cropping season, BN was the highest, intermediate and the lowest for 15NH4Cl, 15N-LP100 and Zero N field experimental plots in the Shiga experiment, respectively. (3) In the micro-plot experiments, BN and B15N were generally higher in the soil block with deep-side application of 15N-LP100 compared with the other soil blocks. The deep-side placement of 15N-LP100 ensured a high efficiency of utilization of its N by rice plants. The method of 15N-LP100-placement also affected the spatial heterogeneity of microbial biomass N in the microplots.  相似文献   

9.
In experiments with transplanted rice (Oryza sativa L.) at the International Rice Research Institute, Philippines, two methods of split application of urea and ammonium sulfate were compared with deep, point placement (10 cm) of urea supergranules and broadcast application of a slow-release fertilizer sulfur-coated urea (SCU). Comparisons were made in the wet and dry seasons and were based on rice yield and N uptake. Urea- and ammonium-N concentrations and pH of the floodwater were measured to aid interpretation of the results.Split applications of urea were generally less efficient than ammonium sulfate. The split in which the initial fertilizer dose was broadcast and incorporated into the soil before transplanting was more effective than the split in which the fertilizer was broadcast directly into the floodwater 21 days after transplanting. Both split applications were inferior to the urea supergranules and SCU, in terms of both yield and N uptake efficiency; average apparent N recoveries ranged from 30% for the delayed split urea to 80% for the urea supergranule.Broadcast applications of urea and ammonium sulfate produced high floodwater concentrations of urea- and ammonium-N, which fell to zero within 4–5 days. Floodwater pH was as high as 9.3 and fluctuated diurnally due to heavy algal growth. Ammonia volatilization and algal immobilization of N in the floodwater were probably responsible for the poor efficiency of the split applications; the supergranules and SCU on the other hand produced low floodwater N concentrations and were efficiently used by the rice crop.  相似文献   

10.
In experiments with transplanted rice (Oryza sativa L.) at the Central Soil Salinity Research Institute, Karnal, India, two methods of application of granular urea, wholly as basal dose U(W) or in splits U(S) were compared with deep, point placement (8 cm) of urea supergranules and broadcast application of two slow-release sources, sulphur-coated urea (SCU) and lac-coated urea (LCU). Comparisons were made in wet season 1984 and 1985 on the basis of ammoniacal N concentration and pH of floodwater, ammonia volatilization, rice yield and N uptake.In 1984 the highest peak concentrations of ammoniacal N (AN) in the floodwater, > 12g m–3, and ammonia volatilization losses 54% of applied N were produced in U(W). Application of N in splits U(S) reduced peak AN levels 5g m–3 and losses to 45.1%. LCU was ineffective in reducing peak AN levels ( 7.5g m–3) or losses (43.6%). However SCU and USG were effective in reducing peak AN levels to < 2g m–3 and N losses to 16.9 and 3.4% respectively. Total ammonia volatilization losses as well as the initial rate of loss correlated very well with the peak levels (second day) of AN, NH3 (aq.) as well as equilibrium vapour pressure of NH3. Floodwater pH was between 9.5 and 10.0.Split application of granular urea was generally more efficient in terms of yield and N recovery (41.4%, average of two years) as compared to whole application (29.5%). LCU was ineffective in improving grain yields or N recovery (30.9%). SCU was ineffective in improving grain yields but improved N recovery to 57.9%., USG increased grain yields only in first year by 19% over U(S) and improved N uptake to 60.5%. A negative linear relationship was established between N uptake by rice at harvest and AN levels in floodwater two days after fertilization which can be used as an index to evaluate fertilizers.  相似文献   

11.
Field and greenhouse experiments were carried out at the University of Sydneyto examine the influence of depth of placement of urea on crop nitrogen (N) uptake and N recovery in wheat grown on a red-brown earth in Australia. In the greenhouse, an 15N source of urea was used in examining the pattern of N availability, while field experiments using an unlabelled urea assessed the usefulness of deep placement of urea as a tool for improving N use by wheat.Placement at a depth of 15 cm slightly delayed the accessibility of N to the plant only in the early stages of growth, i.e., about 12 days after sowing. Large differences in N content and N concentration observed as a result of placement was only transient and disappeared later in the season. Total N recovery was 93.8% in the deep placement and 79.9% in the shallow placemen, but these differences were due to differences in soil N recovery, as crop N recovery was approximately 48% in both treatments.In the field, there was very little advantage in the deep placement compared with the shallow placement. Also, no residual benefit was observed as a result of increased depth of placement. Thus deep placement may not be an important strategy for increasing N uptake over a conventional shallow depth of 3–5 cm.  相似文献   

12.
Mitigating greenhouse gas (GHG: Methane and nitrous oxide) emission from the rice cropland vis-à-vis increasing rice yield is one of the important challenges to the food security and climate change research. N-fertilizer input to the crop land is the key to rice productivity and GHG emission from soil. The sustainability of different types and application methods of N-fertilizers in rice cropland was studies based on the net annual C-equivalent GHG emission (CE) and total financial profit to the farmers’. The study was conducted in a low lying experimental rice field of eastern India during two consecutive years. The experiment was laid down with five replicates of the following treatments: (1) control (no N-fertilizer); (2) broadcasting ammonium sulphate (AS); (3) prilled urea (PU) and (4) deep placement of urea briquette (UB). Compared to other treatments, significantly higher GHG emission and grain yield (5–20% higher over other fertilizer applied plots) were recorded from the PU and UB applied plots respectively. Net CE was calculated using the GHG emission and secondary CE of different processes used in each treatment. The net CE followed the order: PU > UB > Control > AS. The ratio of total grain-C to net CE was significantly higher from the AS (15–51%) and UB (8–34%) plots compared to the PU applied plots. Net financial benefit ($ ha?1) to the farmers’ followed the order: UB > AS > Control > PU. Study indicates that UB may be a climatically sustainable mitigation option in the tropical rice paddy.  相似文献   

13.
Field experiments were conducted in north-central and central Alberta to determine the effect of pellet size and depth of placement on yield and N uptake of barley from fall- and spring-applied urea. The application rate was 56 kg N ha–1. Fall incorporated commercial urea (0.01 g) gave 792 kg ha–1 lower yield and 15 kg ha–1 less N uptake than similarly applied commercial urea in spring on the average for the five experiments. The effectiveness of fall-applied N tended to be greater with large urea pellets (2.5 g), especially when they were placed 15 cm deep. Specifically, the relative yield efficiency of fallversus spring-applied N was 77% when the larger pellets were placed 4 cm deep and 95% when placed 15 cm deep. However, large pellets were less effective than commercial urea when both were applied in spring at sowing or two weeks before.  相似文献   

14.
The growth of weeds and their subsequent reduction of rice yield as affected by N source neem cake coated urea (NCU), dicyandiamide coated urea (DCU), rock phosphate coated urea (RPCU), urea supergranules (USG) and prilled urea (PU) was studied on a clay loam soil at Coimbatore, India. Experiments were conducted in northeast monsoon (NEM) 1981, summer 1982, and southwest monsoon (SWM) 1982 seasons.The crop was associated with eleven weed species, and the dominant weeds wereEchinochloa crus-galli, Cyperus difformis andMarsilea quadrifolia. The weed flora varied between seasons. Deep placement of USG reduced the dry weight of weeds in NEM and summer seasons at 60, 90 and 120 Kg N ha–1 whereas it increased the dry weight at 60 and 90 but not 120 Kg N ha–1 in SWM season. The dry weight of weeds decreased with increased N rates for all N sources during NEM and summer seasons. In SWM season, dry weight of weeds increased with increased N rates for all N sources except USG. The grain yield of rice was drastically reduced with the deep placement of USG at 60 but not 120 Kg N ha–1 in SWM season. The differential effect of the N sources between seasons was due to the change of the weed flora. Dominance ofE. crus-galli during SWM season had greater influence on weed dry weight and grain yield of rice.Nitrogen uptake by weeds was frequently greater in unfertilized plots, particularly in NEM and summer seasons. In SWM season, the apparent fertilizer N recovery by weeds was high for USG. It decreased from 53% for 60 Kg USG-N ha–1 to 4% for 120 Kg USG-N ha–1.Contribution from the part of Ph.D. work of the first author at Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore-641 003, Tamil Nadu, India.  相似文献   

15.
In a laboratory experiment 5 cm depth of water was allowed to percolate daily down through a 15 cm thick soil (Typic Ustipsamment) layer. It was observed that leaching losses of urea supergranules (USG)-N could be decreased by about 20% by the placement of four 0.25 g granules at four points instead of one 1 g granule at one point. In field microplots, the placement of approximately 30 granules of 0.30 g size instead of 9 granules of 1.00 g size resulted in reduced leaching of USG-N and, in turn, increased rice yield. In a follow-up field study, the advantage of more frequently placed USG was confirmed. As compared with 1 g USG placed in the usual manner in the center of four rice hills, increasing the density of placement in soil produced 15% more rice grain. Further increase in rice yield could be obtained by increasing the number of USG placed in the soil and decreasing the size of the granule from 1.00 g to 0.70 or 0.35 g. With USG of 0.35 and 0.70 g yields were equal or sometimes even slightly higher than with split application of prilled urea on a heavily percolating, low-CEC, light-textured soil.  相似文献   

16.
Relative ammonia volatilization loss from prilled urea, urea supergranule (USG), neem cake-coated urea (NCU), rock phosphate-coated urea (RPCU), gypsum-coated urea (GCU), and prilled urea supplemented with dhaincha (Sesbania aculeata) green manure (Dh + PU) was measured in the fields under different hydrological situations of rice growing. Ammoniacal-N and pH of flood water were less with point placement of USG and Dh + PU treatments than with single basal broadcast applications of urea-based fertilizers. Ammonia collected with an acid trap in an enclosed chamber ranged from 1.47–3.07, 0.24–3.74, 0.80–3.50 and 0.50–1.20% of the applied N in upland, alternate wetting and drying, shallow submergence and intermediate deep water situations, respectively. The collected ammonia was less with point placement of USG at 5 cm depth in all situations and with Dh + PU treatment in shallow submergence than with other sources of N. Single basal broadcast applications of RPCU or NCU resulted in relatively higher loss. The loss from top-dressed urea was less than that from basally applied urea because of larger crop canopy at later stages of crop growth.  相似文献   

17.
An objective of the International Network on Soil Fertility and Fertilizer Evaluation for Rice (INSFFER) network is to field evaluate deep-point placement (urea supergranules) and slow-release (sulfur coated urea) N fertilizers in irrigated rice. These N sources were compared for performance with split application of prilled urea at 19 sites in Asia in wet season 1981.SCU or USG differed significantly in response curves from prilled urea at 12 of the 17 sites where N response was observed. Over these 17 sites, 22–25% less N as SCU or 29–31% less N as USG provided the same yield increment as the comparatively higher level of N as prilled urea.High profit N rates were derived for 5 sites. The optimal N levels for SCU or USG were less than for prilled urea. However, in one case for both test materials prilled urea was more profitable than SCU or USG. The marginal rates of return of using SCU or USG as opposed to OPU were calculated for the 11 sites where the response functions of the test materials differed significantly from prilled urea. In other than 2 sites for SCU the MRR exceeded 2.0 for 29 and 58 kg N ha–1, indicating the general profitability of these materials when compared to prilled urea.  相似文献   

18.
A field experiment was conducted on a poorly-drained Aeric Paleaquult in northeastern Thailand to determine the effect of N and S fertilizers on yield of rainfed lowland rice (Oryza sativa L.) and to determine the fate of applied15N- and35S-labeled fertilizers. Rice yield and N uptake increased with applied N but not with applied S in either sulfate or elemental S (ES) form. Rice yield was statistically greater for deep placement of urea as urea supergranules (USG) than for all other N fertilizer treatments that included prilled urea (PU), urea amended with a urease inhibitor (phenyl phosphorodiamidate), and ammonium phosphate sulfate (16% N, 8.6% P).The applied15N-labeled urea (37 kg N ha–1) not recovered in the soil/plant system at crop maturity was 85% for basal incorporation, 53% for broadcast at 12 days after transplanting (DT), 27% for broadcast at 5–7 days before panicle initiation (DBPI), and 49% for broadcast at panicle initiation (PI). The basal incorporated S (30 kg ha–1) not recovered in the soil/plant system at crop maturity was 37% for sulfate applied as single superphosphate (SSP) and 34% for ES applied as granulated triple superphosphate fortified with S (S/GTSP). Some basal incorporated15N and35S and some broadcast15N at PI was lost by runoff. Heavy rainfall at 3–4 days after basal N incorporation and at 1 day after PI resulted in water flow from rice fields at higher elevation and total inundation of the 0.15-m-high15N and35S microplot borders. Unrecovered15N was only 14% for 75 kg urea-N ha–1 deep placed as USG at transplanting. This low N loss from USG indicated that leaching was not a major N loss mechanism and that deep placement was relatively effective in preventing runoff loss.In order to assess the susceptibility of fertilizer-S to runoff loss, a subsequent field experiment was conducted to monitor35S activity in floodwater for 42 days after basal incorporation of SSP and S/GTSP. Maximum35S recoveries in the floodwater were 19% for SSP after 7 days and 7% for S/GTSP after 1 day. Recovery of35S in floodwater after 14 days was 12% for SSP and 3% for S/GTSP.This research suggests that on poorly drained soils with a low sorption capacity, a sizeable fraction of the fertilizer S and N remains in the floodwater following application. Runoff could then be an important mechanism of nutrient loss in areas with high probability for inundation following intense rainfall.  相似文献   

19.
Alternative N-fertilizer management practices are needed to increase productivity and the N-use efficiency of flooded rice (Oryza sativa L.). Seven field experiments were conducted at various sites in Bangladesh and Indonesia to evaluate the effect of time and method of fertilizer-N application on grain yield in transplanted rice. Conventional fertilizer application was compared with band placement of liquid urea using a mechanical push-type injector and point placement of urea supergranules. With band placement, grain yields were up to 38 and 55% higher than with researchers' and farmers' practices, respectively, and similar to those with point placement of urea supergranules.  相似文献   

20.
Initial and residual effects of nitrogen (N) fertilizers on grain yield of a maize/bean intercrop grown on a deep, well-drained Humic Nitosol (66% clay, 3% organic carbon) were evaluated. Enriched (15N) N fertilizer was used to study the fate of applied N in two seasons: using urea (banded) at 50 kg N ha–1 in one season, and15N-enriched urea (banded), calcium ammonium nitrate (CAN, banded), and urea supergranules (USG, point placement) were applied in the other season (different field) at 100 kg N ha–1. Nitrogen fertilizer significantly (P = 0.05) increased equivalent maize grain yield in each season of application with no significant differences between N sources, i.e., urea, CAN, and USG. Profitmaximizing rates ranged from 75 to 97 kg N ha–1 and value: cost ratios ranged from 3.0 to 4.8. Urea gave the highest value: cost ratio in each season. Most (lowest measurement 81%) of the applied N was accounted for by analyzing the soil (to 150 cm depth) and plant material. Measurements for urea, CAN, and USG were not significantly different. The high N measurements suggest low losses of applied N fertilizer under the conditions of the study. Maize plant recovery ranged from 35 to 55%; most of this N (51–65%) was in the grain. Bean plant recovery ranged from 8 to 20%. About 34–43% of the applied N fertilizer remained in the soil, and most of it (about 70%) was within the top soil layer (0–30 cm). However, there were no significant equivalent maize grain increases in seasons following N application indicating no beneficial residual effect of the applied fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号