首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Development of Downdrag on Piles and Pile Groups in Consolidating Soil   总被引:1,自引:0,他引:1  
Development of pile settlement (downdrag) of piles constructed in consolidating soil may lead to serious pile foundation design problems. The investigation of downdrag has attracted far less attention than the study of dragload over the years. In this paper, several series of two-dimensional axisymmetric and three-dimensional numerical parametric analyses were conducted to study the behavior of single piles and piles in 3×3 and 5×5 pile groups in consolidating soil. Both elastic no-slip and elasto-plastic slip at the pile–soil interface were considered. For a single pile, the downdrag computed from the no-slip elastic analysis and from the analytical elastic solution was about 8–14 times larger than that computed from the elasto-plastic slip analysis. The softer the consolidating clay, the greater the difference between the no-slip elastic and the elasto-plastic slip analyses. For the 5×5 pile group at 2.5 diameter spacing, the maximum downdrag of the center, inner, and corner piles was, respectively, 63, 68, and 79% of the maximum downdrag of the single pile. The reduction of downdrag inside the pile group is attributed to the shielding effects on the inner piles by the outer piles. The relative reduction in downdrag (Wr) in the 5×5 pile group increases with an increase in the relative bearing stiffness ratio (Eb/Ec), depending on the pile location in the group. Compared with the relative reduction in dragload (Pr), Wr at the corner pile is less affected by the group interaction for a given surcharge load. This suggests that the use of sacrificing piles outside the pile group will be more effective on Pr than on Wr. Based on the three cases studied, the larger the number of piles in a group, the greater the shielding effects on Wr. Relatively speaking, Wr is more sensitive to the total number of piles than to the pile spacing within a pile group.  相似文献   

2.
Pile Response to Lateral Spreads: Centrifuge Modeling   总被引:1,自引:0,他引:1  
The paper presents results of eight centrifuge models of vertical single piles and pile groups subjected to earthquake-induced liquefaction and lateral spreading. The centrifuge experiments, conducted in a slightly inclined laminar box subjected to strong in-flight base shaking, simulate a mild, submerged, infinite ground slope containing a 6-m-thick prototype layer of liquefiable Nevada sand having a relative density of 40%. Two- and three-layer soil profiles were used in the models, with a 2-m-thick nonliquefiable stratum placed below, and in some cases also above the liquefiable Nevada sand. The model piles had an effective prototype diameter, d, of 0.6 m. The eight pile models simulated single end-bearing and floating reinforced concrete piles with and without a reinforced concrete pile cap, and two 2×2 end-bearing pile groups. Bending moments were measured by strain gauges placed along the pile models. The base shaking liquefied the sand layer and induced free field permanent lateral ground surface displacements between 0.7 and 0.9 m. In all experiments, the maximum permanent bending moments, Mmax occurred at the boundaries between liquefied and nonliquefied layers; the prototype measured values of Mmax ranged between about 10 and 300 kN?m. In most cases the bending moments first increased and then decreased during the shaking, despite the continued increase in free field displacement, indicating strain softening of the soil around the deep foundation. The largest values of Mmax were associated with single end-bearing piles in the three-layer profile, and the smallest values of Mmax were measured in the end-bearing pile groups in the two-layer profile. The companion paper further analyzes the Mmax measured in the single pile models, and uses them to calibrate two limit equilibrium methods for engineering evaluation of bending moments in the field. These two methods correspond to cases controlled, respectively, by the pressure of liquefied soil, and by the passive pressure of nonliquefied layers on the pile foundation.  相似文献   

3.
Single Piles in Lateral Spreads: Field Bending Moment Evaluation   总被引:1,自引:0,他引:1  
The results of the six centrifuge models of instrumented single pile foundations presented in a companion paper, are used to calibrate two limit equilibrium (LE) methods to evaluate bending response and factor of safety against bending failure of piles in the field subjected to lateral spreading. These six models simulate single reinforced concrete piles in two- and three-layer soil profiles, mostly end bearing but including also one floating pile, with and without a reinforced concrete pile cap, and one model where the liquefiable sand layer was densified locally around the pile to simulate the effect of pile driving. The measured permanent maximum bending moments in the pile, Mmax, invariably occurred at the boundaries between liquefied and nonliquefied soil layers, and in most cases the moments at such boundaries reached their peak Mmax and then decreased during shaking. These values of Mmax before decrease, which were associated with failure of the soil against the deep foundation, are used to calibrate the two proposed LE engineering methods. For the piles where Mmax was controlled by the pressure of the liquefied soil, the measured prototype Mmax in the centrifuge tests ranged between about 100 and 200 kN?m. It is found that a lateral pressure per unit area of pile or pile cap constant with depth (pl) of 10.3 kPa, predicts Mmax of the single piles tested within 15%. For the cases where Mmax was controlled by passive failure of the shallow nonliquefied layer, the prototype Mmax measured at the upper and lower boundaries of the liquefied soil in the centrifuge tests ranged between 160 and 305 kN?m. The Mmax values of 160–270 kN?m measured at the upper boundary were reached during the shaking, and then observed to decrease towards the end of shaking. At the lower boundary, the measured Mmax of 305 kN?m was reached at the end of shaking. Use of passive pressure against the pile of the shallow nonliquefiable soil layer, obtained from the ultimate plateaus (pult) of p-y curves, in conjunction with basic pile kinematic considerations and parameters addressed herein, explains well the development of moments measured in the centrifuge at both the upper and lower boundaries of the liquefied layer. This good accord validates the simplified LE prediction of Mmax at the upper boundary. The two proposed simplified engineering LE methods are used to evaluate bending response and distress of end-bearing and floating piles in the Niigata Family Court House building during the 1964 Niigata earthquake, with good agreement between predicted and observed performance.  相似文献   

4.
This paper presents experimental results and analysis of six model centrifuge experiments conducted on the 150?g-ton Rensselaer Polytechnic Institute centrifuge to investigate the effect of soil permeability on the response of end-bearing single piles and pile groups subjected to lateral spreading. The models were tested in a laminar box and simulate a mild infinite slope with a liquefiable sand layer on top of a nonliquefiable layer. Three fine sand models consisting of a single pile, a 3×1 pile group, and a 2×2 pile group were tested, first using water as pore fluid, and then repeated using a viscous pore fluid, hence simulating two sands of different permeability in the field. The results were dramatically different, with the three tests simulating a low permeability soil developing 3–6 times larger pile head displacements and bending moments at the end of shaking. Deformation observations of colored sand strips, as well as measurements of sustained negative excess pore pressures near the foundations in the “viscous fluid” experiments, indicated that an approximately inverted conical zone of nonliquefied soil had formed in these tests at shallow depths around the foundation, which forced the liquefied soil in the free field to apply its lateral pressure against a much larger effective foundation area. Additional p-y and limit equilibrium back-analyses support the hypothesis that the greatly increased foundation bending response observed when the soil is less pervious is due to the formation of such inverted conical volume of nonliquefied sand. This study provides evidence of the importance of soil permeability on pile foundations response during lateral spreading for cases when the liquefied deposit reaches the ground surface, and suggests that bending response may be greater in silty sands than in clean sands in the field. Moreover, the observations in this study may serve as basis for realistic practical engineering methods to evaluate pile foundations subjected to lateral spreading and pressure of liquefied soil.  相似文献   

5.
A series of centrifuge model tests was conducted to investigate the behavior of pile groups of various sizes and configurations behind a retaining wall in very soft clay. With a 1.2-m excavation in front of the wall, which may simulate the initial stage of an excavation prior to strutting, the test results reveal that the induced bending moment on an individual pile in a free-head pile group is always smaller than that on a corresponding single pile located at the same distance behind the wall. This is attributed to the shadowing and reinforcing effects of other piles within the group. The degree of shadowing experienced by a pile depends on its relative position in the pile group. With a capped-head pile group, the individual piles are forced to interact in unison though subjected to different magnitudes of soil movement. Thus, despite being subjected to a larger soil movement, the induced bending moment on the front piles is moderated by the rear piles through the pile cap. A finite element program developed at the National University of Singapore is employed to back-analyze the centrifuge test data. The program gives a reasonably good prediction of the induced pile bending moments provided an appropriate modification factor is applied for the free-field soil movement and the amount of restraint provided by the pile cap is properly accounted for. The modification factor applied to the free-field soil movement accounts the reinforcing effect of the piles on the soil movement.  相似文献   

6.
Ultimate Lateral Resistance of Pile Groups in Sand   总被引:1,自引:0,他引:1  
Experimental investigations on model pile groups of configuration 1 × 1, 2 × 1, 3 × 1, 2 × 2, and 3 × 2 for embedment length-to-diameter ratios L∕d = 12 and 38, spacing from 3 to 6 pile diameter, and pile friction angles δ = 20° and 31°, subjected to lateral loads, were conducted in dry Ennore sand obtained from Chennai, India. The load-displacement response, ultimate resistance, and group efficiency with spacing and number of piles in a group have been qualitatively and quantitatively investigated. Analytical methods have been proposed to predict the ultimate lateral capacity of single pile and pile groups. The proposed methods account for pile friction angle, embedment length-to-diameter ratio, the spacing of piles in a group, pile group configuration, and soil properties. These methods are capable of predicting the lateral capacity of piles and pile groups reasonably well as noted and substantiated by the comparison with the experimental results of the writers and other researchers.  相似文献   

7.
Much of the reported research on the dynamic analysis of pile foundations assumes linear behavior of soil that may not be valid for strong excitations. In this paper, material nonlinearity of the soil caused by plasticity and work hardening is considered in the dynamic analysis of pile foundations. An advanced plasticity based soil model, HiSS, is incorporated in a finite element technique. To simulate radiation effects, proper boundary conditions are used. The model and algorithm are verified with analytical results that are available for elastic and elastoplastic soil models. Analyses are carried out for free-field response and pile head response of end-bearing single piles. Both harmonic and transient excitations are considered in the analyses. Effects of frequency of excitation and stiffness of soil are investigated. It was found that the nonlinearity of soil has significant effects on the pile response for lower and moderate frequencies of excitations (a0<0.6) while at higher frequencies its effects are not as significant.  相似文献   

8.
Group Interaction Effects on Laterally Loaded Piles in Clay   总被引:3,自引:0,他引:3  
This paper presents the results of static lateral load tests carried out on 1×2, 2×2, 1×4, and 3×3 model pile groups embedded in soft clay. Tests were carried out on piles with length to diameter ratios of 15, 30, and 40 and three to nine pile diameter spacing. The effects of pile spacing, number of piles, embedment length, and configuration on pile-group interaction were investigated. Group efficiency, critical spacing, and p multipliers were evaluated from the experimental study. The experimental results have been compared with those obtained from the program GROUP. It has been found that the lateral capacity of piles in 3×3 group at three diameter spacing is about 40% less than that of the single pile. Group interaction causes 20% increase in the maximum bending moment in piles of the groups with three diameter spacing in comparison to the single pile. Results indicate substantial difference in p multipliers of the corresponding rows of the linear and square pile groups. The predicted field group behavior is in good agreement with the actual field test results reported in the literature.  相似文献   

9.
This paper describes a fundamental experimental study on the vertical, horizontal, and rocking dynamic behavior of single pile foundations in granular soils. Aimed at generating an extensive experimental database with sufficient parametric variations to clarify a number of issues, multiple series of canonical small-strain forced-vibration centrifuge tests were performed on two model piles using the technique of random vibration and impact loading. Correlated well with vertical- and horizontal-centric dynamic tests within the experimental program, a novel hybrid-mode test method by means of eccentric excitation is validated and employed for the characterization of the foundation responses in general planar motion. A large set of experimental data for different length scales were generated and synthesized in the frequency domain in the form of directional force-response transfer functions. By virtue of the physical measurements, the validity and limitations of two fundamental elastodynamic pile solutions pertaining to the physical dynamic soil-foundation problem are also evaluated.  相似文献   

10.
The results of a series of dynamic centrifuge tests on model pile groups in (level) liquefied and laterally spreading soil profiles are presented. The piles are axially loaded at typical working loads, which has enabled liquefaction-induced settlements of the foundations to be studied. The development of excess pore pressures within the bearing layer (dense sand) was found to lead to a reduction in pile capacity and potentially damagingly large coseismic settlements. As the excess pore pressure increased, these settlements were observed to exceed postshaking downdrag-induced settlements, which occur due to the reconsolidation of liquefied sand around the pile shaft. In resisting settlement, the pile cap was found to play an important role by compensating for the capacity lost by the piles. This was shown to be achieved by the development of dilative excess pore pressures beneath the pile cap within the underlying loose liquefied sand which provide increasing bearing capacity with settlement. The centrifuge test data show good qualitative and quantitative agreement with the limited amount of model and full-scale data currently available in the literature. The implications of settlement for the design of piled foundations to serviceability conditions in both level and sloping ground are discussed, with settlement becoming an increasingly important consideration for laterally stiffer piles. Finally, empirical relationships have been derived from the test data to relate suitable static safety factors to given increases in excess pore pressure in the bearing layer within a performance-based design framework (i.e., based on limiting displacements).  相似文献   

11.
The behavior of bored pile groups in cemented sands was examined by a field testing program at a site in South Surra, Kuwait. The program consisted of axial load tests on single bored piles in tension and compression and compression tests on two pile groups each consisting of five piles. The spacing of the piles in the groups was two- and three-pile diameters. Soil exploration included standard penetration tests, dynamic cone tests, and pressure meter tests. Laboratory tests included basic properties and drained triaxial compression tests. Test results on single piles indicated that 70% of the ultimate load was transmitted in side friction that was uniform along the pile shafts. The calculated pile group efficiencies were 1.22 and 1.93 for a pile spacing of two- and three-pile diameters, respectively. Since settlement usually controls the design of pile groups in sand, the group factor defined herein as the ratio of the settlement of the group to the settlement of a single pile at comparable loads in the elastic range was determined from test results. A comparison between the measured values and calculated values based on a simplified formula was made.  相似文献   

12.
Evaluation of Reliability of Platform Pile Foundations   总被引:1,自引:0,他引:1  
A primary consideration and concern in development and implementation of risk assessment and management based hurricane and earthquake criteria for design and requalification of platforms in the Bay of Campeche criteria is the reliability characteristics of the pile foundations that support the platforms. Analyses of the ultimate limit state (ULS) performance characteristics of the platform pile foundations are summarized. These analyses indicated that in many cases when the capacities of the piles were based on American Petroleum Institute “static” pile capacity analysis methods, the piles were the most likely to fail elements in the platforms. Results from these analyses were in dramatic contrast with the performance of pile foundations supporting more than 250 platforms during the 100-year hurricane Roxanne (1995). Detailed analytical and field studies were performed to determine the ULS performance characteristics of pile foundations subjected to hurricane induced lateral and axial loadings. This study addressed all of the phases in the life cycle of the piles. The results of this work indicate that, in general, there can be large biases in the predicted capacities of piles that support the platforms.  相似文献   

13.
Centrifuge Model Study of Laterally Loaded Pile Groups in Clay   总被引:3,自引:0,他引:3  
A series of centrifuge model tests has been conducted to examine the behavior of laterally loaded pile groups in normally consolidated and overconsolidated kaolin clay. The pile groups have a symmetrical plan layout consisting of 2, 2×2, 2×3, 3×3, and 4×4 piles with a center-to-center spacing of three or five times the pile width. The piles are connected by a solid aluminum pile cap placed just above the ground level. The pile load test results are expressed in terms of lateral load–pile head displacement response of the pile group, load experienced by individual piles in the group, and bending moment profile along individual pile shafts. It is established that the pile group efficiency reduces significantly with increasing number of piles in a group. The tests also reveal the shadowing effect phenomenon in which the front piles experience larger load and bending moment than that of the trailing piles. The shadowing effect is most significant for the lead row piles and considerably less significant for subsequent rows of trailing piles. The approach adopted by many researchers of taking the average performance of piles in the same row is found to be inappropriate for the middle rows, of piles for large pile groups as the outer piles in the row carry significantly more load and experience considerably higher bending moment than those of the inner piles.  相似文献   

14.
This paper presents an assessment of the potential of using the p–y analysis method for single piles and pile groups subjected to lateral spreading. The computed responses were compared with the results from the full-scale lateral spreading tests in Japan as presented in the Part I companion paper. The responses of the single piles subjected to lateral spreading were determined by imposing the known free-field soil movement profile to the Winkler spring model. The soil springs of nonliquefied soils used in this study were based upon standard p–y springs whereas zero spring stiffness was used for liquefied soils. For the case of pile groups, they were modeled as an equivalent single pile with a rotational spring at the pile head to simulate effect of pile head restraint. A decrease of soil spring stiffnesses using the p-multiplier approach was used to account for pile group effects. Based on the results of analyses, the computed responses of all sets of the test piles using a single set of baseline soil properties were in good agreement with the measured responses. These results suggest that the p–y analysis method may be used to estimate the behavior of piles subjected to lateral spreading.  相似文献   

15.
通过室内模型试验,实测得到碎石桩、夯实水泥土桩和CFG桩复合地基桩土荷载分担比、桩土应力比和桩间土深层变形,并对三类不同桩体材料复合地基的承载及变形性状进行了对比分析.认为碎石桩复合地基和夯实水泥土桩复合地基均存在有效桩长或有效复合土层厚度;碎石桩桩长超过有效桩长,对提高复合地基承载力和压缩模量、减小变形效果不明显,除一些特别情况如为处理可液化地基外,设计桩长可适当超过有效桩长,但不宜过长;夯实水泥土桩复合地基的有效桩长与桩身强度相关性显著,应以桩身强度控制进行夯实水泥土桩桩体设计,使按桩身强度确定的单桩承载力大于或等于由桩周土及桩端土的抗力所提供的单桩承载力;CFG桩复合地基桩身强度高,桩体自身压缩性小,可全桩长发挥侧阻作用,当桩端落在好的持力层时,能很好地发挥端阻,提高承载力,减小变形,设计时应优先选择好的桩端持力层进行设计.   相似文献   

16.
Piles driven into clay are often subjected to indirect loading as a result of the surcharge applied on the surrounding area. During the drained period, both the piles and the soil undergo downward movements caused by the axial and the surcharge loading, respectively. Depending on the relative movement of the pile–soil system, positive and negative skin friction develop on the pile’s shaft. Negative skin friction is the drag force that may be large enough to reduce the pile capacity and/or to overstress the pile’s material causing fractures or perhaps structural failure of the pile, and/or possibly pulling out the pile from the cap. A numerical model that uses the finite element technique combined with the soil responses according to Mohr–Coulomb criteria was developed for case simulation. The computer program CRISP (developed by Cambridge University) was used in this study. The numerical model was first tested against the results predicted by the bearing capacity theories for pile foundations in clay subjected to axial loading. Upon achieving satisfactory results, the numerical model was then used to generate data for piles subjected to surcharge loading. The predicted values were compared well with the field data and the empirical formulae available in the literature. Based on the results of the present investigation, design charts and procedures are presented to predict the location of the neutral plane and to estimate the drag force acting on the pile’s shaft for a given pile–soil–loading conditions. In the case of excessive drag force, coating the pile’s shaft with a thin layer of bitumen is advisable to eliminate or minimize the drag force. The design procedure presented herein would provide the means to establish the need and the extent of the pile coating. Furthermore, it demonstrates the role of the factor of safety on both pile capacity and the depth of the neutral plane.  相似文献   

17.
Many transmission towers, high-rise buildings, and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large diameter with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile, because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite-element method (FEM) of model tests and a prototype test of a laterally loaded short pile and pier foundation located near slopes, respectively. Initially, in this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30° slopes and horizontal ground were analyzed by the three- dimensional (3D) finite-element (FE) analyses. Furthermore, field tests of a prototype pier foundation subjected to lateral loading on a 30° slope was reported. The FE analyses were conducted to simulate these results. The main purpose of this paper is the validation of the 3D elasto–plastic FEM by comparisons with the experimental data.  相似文献   

18.
A method was presented to evaluate the reliability of axially loaded pile groups designed using the traditional concept of group efficiency along the lines of load and resistance factor design. Group effects and system effects were identified as the major causes that led to a significantly greater observed reliability of pile foundations than calculated reliability of single piles. Statistical analyses were conducted to evaluate these effects based on observed pile performance. A database of pile group load tests was collected and interpreted for this purpose. Subsequently, the reliability of pile groups associated with the allowable stress design practice was calculated using the suggested method. The calculated probability of failure of pile groups was found to be one to four orders of magnitude smaller than that of single piles, depending on the significance of group effects and system effects. Finally, values of the target reliability index βTS for single piles required to achieve a specified target reliability of pile group foundations were calculated for several design methods. Due to group effects and system effects, the values of βTS should be different for single piles, a pile group, and a pile system of several groups.  相似文献   

19.
Simplified Approach for the Seismic Response of a Pile Foundation   总被引:1,自引:0,他引:1  
Pseudostatic approaches for the seismic analysis of pile foundations are attractive for practicing engineers because they are simple when compared to difficult and more complex dynamic analyses. To evaluate the internal response of piles subjected to earthquake loading, a simplified approach based on the “p-y” subgrade reaction method has been developed. The method involves two main steps: first, a site response analysis is carried out to obtain the free-field ground displacements along the pile. Next, a static load analysis is carried out for the pile, subjected to the computed free-field ground displacements and the static loading at the pile head. A pseudostatic push over analysis is adopted to simulate the behavior of piles subjected to both lateral soil movements and static loadings at the pile head. The single pile or the pile group interact with the surrounding soil by means of hyperbolic p-y curves. The solution derived first for the single pile, was extended to the case of a pile group by empirical multipliers, which account for reduced resistance and stiffness due to pile-soil-pile interaction. Numerical results obtained by the proposed simplified approach were compared with experimental and numerical results reported in literature. It has been shown that this procedure can be used successfully for determining the response of a pile foundation to “inertial” loading caused by the lateral forces imposed on the superstructure and “kinematic” loading caused by the ground movements developed during an earthquake.  相似文献   

20.
Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island, Japan, to assess the behavior of a single pile, a four-pile group, and a nine-pile group subjected to lateral spreading. The test piles were extensively instrumented with strain gauges to measure the distribution of bending moment during lateral spreading which allowed the backcalculation of the loading conditions, as well as the assessment of damage and performance of the piles. Based on the test results, it was concluded that using controlled blasting successfully liquefied the soil, and subsequently induced lateral spreading in the 4–6% surface slope test beds. The free-field soil displacements in the vicinity of the test piles were over 40 cm for both tests. When compared with the results from the single pile case, the effect of pile head restraint from the pile cap improved overall pile performance by decreasing the displacement of the pile groups and lowering the maximum moments in individual piles within each group. Finally, backcalculated soil reactions indicated that the liquefied soil layer imparted insignificant force to the piles. In the companion to this paper (Part II), an assessment of the potential of using the p–y analysis method for single piles and pile groups subjected to lateral spreading is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号