首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《Ceramics International》2023,49(12):20071-20079
In this work, hybrid nanocomposite materials for the wastewater treatment via photocatalysis have been developed by combining multi walled carbon nanotubes (MWCNT) and hematite (α-Fe2O3).A straightforward strategy via sonication method has been used to prepare theα-Fe2O3/CNT nanocomposites with varying CNT content (5%, 7.5%, and 10%)and characterized by X-ray Diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and UV–Vis. spectrophotometer. XPS spectra was used to identify the defects/oxygen vacancies in the α-Fe2O3 lattice. TEM revealed the well deposition of α-Fe2O3 nanoparticles on the CNT surface. α-Fe2O3/CNT 10% nanocomposites have higher photocatalytic activity with 87% degradation of Rose Bengal dye in 90 min. The increased photocatalytic activity can be attributed to the synergistic contribution of α-Fe2O3 and CNTs, which inhibits photo-generated charge carrier recombination and the formation of highly active radical species (OH radicals, and O2 radicals) on the surface of CNTs. This research may be useful not only for understanding the photocatalytic mechanism, but also for developing efficient photocatalysts for the organic pollutant degradation.  相似文献   

2.
In this research, carbon nanotube (CNT)-modified plasmonic silver-strontium titanate (Ag@ SrTiO3) nanocomposites for the degradation of the organic dye were prepared by the sol-gel method. The characterization of all products was carried out using the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption test (BET), field emission-scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV–visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, electrochemical impedance spectroscopy (EIS), and transient photocurrent (TPC) studies. It was found that the incorporation of Ag in and introducing CNT into the SrTiO3 nanoparticles reduced the crystallite size to 21 nm and the band gap energy to 2.7 eV. The Reduced PL peak intensity, increased photocurrent value, and reduced charge transfer resistance approved that the Ag@SrTiO3@CNT nanocomposite had a greater charge transfer efficiency than other samples. The optimal dosage of the photocatalyst, for the complete degradation of 5 ppm of the methylene blue (MB) solution after 30 min of the visible light irradiation, was decided as 0.5 g/L. Besides, in the experimental environment, the Ag@SrTiO3@CNT sample illustrated the most significant photocatalytic performance of the degradation of methyl orange (MO) and Rhodamine B (RhB) dyes. The detailed mechanism and kinetics of the degradation procedure were clarified. Finally, the prepared system displayed increased stability and reusability in the entire cyclic degradation experiment.  相似文献   

3.
In this research, novel ternary Ag/αFe2O3-rGO nanocomposites with various contents of GO were synthesized via a facile one-pot hydrothermal method. Ag/αFe2O3-rGO nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDX), photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR). The results showed that hematite nanoparticles and Ag nanoparticles were well decorated on the graphene surface. Photocatalytic activity of Ag/αFe2O3-rGO ternary nanocomposites and pure Ag/αFe2O3 was investigated for photodegradation of Congo red dye solution as a model pollutant under UV light irradiation. The ternary nanocomposite with 1.8?mg/ml GO aqueous solution concentration shows higher degradation efficiency under UV light irradiation than the pure Ag/αFe2O3 and the nanocomposites with other GO aqueous solution concentrations. It was observed that the adsorption of the dyes on the nanocomposites surface is dependent on the graphene content due to a decrease in the recombination rate, particles size, and increase charge carrier transfer. The results show that the Ag/αFe2O3-rGO nanocomposite can be used as an excellent photocatalytic material for degradation of Congo red dye in wastewater. A possible photocatalytic mechanism was proposed for degradation of Congo red dye.  相似文献   

4.
Transparent TiO2 crystallized 5CaO–10BaO–65B2O3–Al2O3–20TiO2–10ZnO (CBBATZ) glass nanocomposites were fabricated using melt-quenching technique followed by specific heat treatments. As-quenched glass samples were provided three different heat treatments at 630°C for 3, 5, and 10 hours in order to obtain different amounts of TiO2 nanocrystals in the glass. The presence of rutile phase of TiO2 nanocrystals in glass was confirmed by X-ray diffraction. The glass nanocomposite heat treated for 10 hours showed a hydrophobic nature with contact angle of 90.90°. Contact angle decreased from 90.90 to 22.20°, when irradiated under ultraviolet (UV) radiation for 45 minutes. This photoinduced hydrophilicity showed a photocatalytic and self-cleaning properties of glass nanocomposite. During photocatalytic ink test, the maximum change in color of Resurin (Rz) ink and 60% degradation in absorbance of ink within 150 minutes under UV radiation were found for glass nanocomposite heat treated at 10 hours. Also, 78% degradation in absorbance of methylene blue dye (pollutant) within 180 minutes under UV irradiation was found for glass naocomposite heat-treated at 10 hours. Antibacterial performance of transparent glass nanocomposite against Escherichia coli was evaluated as well. More than 95% of the bacterial cells were degraded with glass nanocomposite heat-treated at 10 hours. CBBATZ glass nanocomposite found to impart the antibacterial effect through generation of reactive oxygen species (ROS) in aqueous medium. ROS species which was confirmed in the bacterial cell through intracellular ROS generation kit. During evaluation of mechanical properties using nanoindentation technique, the values of hardness and reduced modulus increased by ~26% and 10%, respectively, for glass nanocomposite heat-treated at 10 hours as compared to as-quenched glass.  相似文献   

5.
An efficient and scalable one-pot synthetic method to prepare nanostructure composite of ZnFe2O4–FeFe2O4–ZnO (ZFZ) has been investigated. This method is based on thermal decomposition of iron(III) acetate and zinc acetate in monoethanolamine (MEA) as a capping agent. Moreover, thermogravimetric analysis (TG-DTG) was performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. ZFZ was immobilized on glass using doctor blade method and calcinated at different temperatures. The properties of the ZFZ nanocomposite have been examined by different techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance (DRS). FESEM shows that nanocomposite is monocrystallines and a narrow dispersion in size of 48 nm. XRD confirms that the prepared nanocomposite is composed of franklinite, ZnFe2O4 (54%), magnetite, FeFe2O4 (8%) and wurtzite, ZnO (48%). Photocatalytic activity of ZFZ immobilized on glass was carried out by choosing an azo textile dye, Reactive Red 195 (F3B) as a model pollutant under UV irradiation with homemade photocatalytic apparatus and the results indicated that ZFZ exhibited good photocatalytic activity.  相似文献   

6.
《Ceramics International》2020,46(14):21958-21977
The fabrication of nanocomposite photocatalytsts with excellent photocatalytic activity is an important step in the improved degradation of organic dyes. A series of nanocomposite photocatalysts was synthesized with g-C3N4 and ZnO loading contents of 10, 20 and 30%. The nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS). The optical band gaps of g-C3N4, ZnO and ZnAl2O4 were about 2.79, 3.21 and 3.55 eV, respectively. Methylene blue (MB) was degraded over the prepared photocatalysts under UV irradiation. Photocatalytic activity was about 9.1 and 9.6 times higher, respectively, on 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts than on pure ZnAl2O4 spinel powders. Recycling experiments showed that 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts exhibited good stability after five cycles of use.  相似文献   

7.
《Ceramics International》2023,49(7):10455-10461
In this work, α-MnO2/BiVO4 nanocomposites with varying MnO2 contents (0–7 wt%) were successfully prepared via the simple chemical method. The structure, morphology, and optical properties of prepared nanocomposites were studied by various analytical techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic efficiency of α-MnO2/BiVO4 nanocomposites was studied via decomposition of rhodamine B (RhB) and tetracycline (TC) under exposure to visible light (λ ≥ 420 nm). Due to good structure and composite advantages, 5%MnO2/BiVO4 (MnBV-5) photocatalyst exhibited superior RhB and TC degradation efficiency to all other samples. In addition, the MnBV-5 photocatalyst showed good stability, and no apparent reduction in photocatalysis efficiency was noted after five testing cycles. Therefore, the MnO2/BiVO4 nanocomposite demonstrated a good potential for photocatalytic decomposition of new water contaminants.  相似文献   

8.
《Ceramics International》2022,48(1):313-319
Natural sun light driven photocatalytic materials have received remarkable attention due to their imminent applications in environmental remediation and energy conversions. In this study, natural sun light driven hierarchal spinel nickel cobaltite nanoflakes (NiCo2O4) anchored multiwalled carbon nanotubes (MWCNTs) nanocomposite was synthesized by using simple chemical route. The structural, morphological and functional group of as-prepared NiCo2O4 anchored MWCNTs was studied by using X-ray diffractometry, field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The UV–vis diffusive reflectance spectroscopy results demonstrated decrease in optical bandgap from 1.32 to 1.16eV compared with pristine spinel NiCo2O4 nanoflakes. MWCNTs anchored NiCo2O4 showed extremely good photocatalytic behavior and we verified 98% degradation of MB in 35 min under natural sun light. NiCo2O4 anchored MWCNTs also confirmed its excellent stability and reusability by retaining 96% of photocatalytic efficiency after 7 cycles of operation. Improved photocatalytic behavior of NiCo2O4 anchored MWCNTs nanocomposite in comparison to NiCo2O4 nanoflakes is mainly attributed to excellent electron storage ability of MWCNTs which made catalyst a great acceptor. Moreover, porous structure of MWCNTs not only provides large surface area with more active sites but also increases conductivity and decreases agglomerations on the surface of material which render e-/h+ pair recombination. Overall, this work shed new light for the synthesis of NiCo2O4 anchored MWCNTs with enhanced photocatalytic properties.  相似文献   

9.
《Ceramics International》2022,48(18):26487-26498
Herein, titanate-based perovskite CaTiO3 nanosheets were successfully designed via boron nitride quantum dots (BNQDs) to fabricate CaTiO3/BNQDs catalyst. The as-fabricated composite catalysts were analysed by transmission electron microscope (TEM), scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), X-ray diffraction (XRD), UV–vis spectroscopy (UV-DRS), photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) techniques. SEM-Mapping analysis showed that the boron and nitrogen elements dispersed well over the CaTiO3 surface which was useful for building electronic channels for rapid transport of photo-induced charge pairs. TEM images verified the attachment of BNQDs around the surface of host CaTiO3 forming intimate interface while the distribution of chemical states was observed by XPS analysis demonstrating strong coupling effect between BNQDs and CaTiO3 through Ti–O–N and Ti–O–B bonds. Moreover, PL and light absorption properties enhanced with the quantum confinement effect of BNQDs. As expected, the photocatalytic degradation rate of CaTiO3/BNQDs was increased to kapp = 0.015 min? 1 with optimum BNQDs loading, which was 2.31 times folder than that of bare CaTiO3 (0.006 min? 1). The enhanced photocatalytic efficiency was observed for CaTiO3/BNQDs than pristine perovskite on account of formation of electron tapping sites, decreased band gap energy and hindered recombination rate. On the other hand, in the presence of H2O2, the degradation percentage increased from 88.5% to 92.1% at the end of 120 min of irradiation while 96.8% of TC was quickly degraded within 60 min after activating with peroxymonosulfate which created strong sulphate radicals. Radical trapping tests indicated that the photo-generated holes were the primary active species in the photocatalytic mechanism. Moreover, CaTiO3/BNQDs catalyst showed excellent stability in recycling tests. Besides, the possible degradation mechanism was proposed. This study shed light on the significance of BNQDs in the enhancement of the photocatalytic activities of titanate-based perovskite for effective degradation of tetracycline antibiotic in contaminated water.  相似文献   

10.
《Ceramics International》2020,46(11):18534-18543
The Bismuth based Zinc metal oxide (ZnBi12O20) nanorods were synthesized via single step solvothermal approach. The characterization of synthesized hybridized structure was done by several analysis such as X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UVvis–DRS), Fourier transform-infrared spectroscopy (FT–IR), Thermogravimetric analysis (TGA), Raman spectroscopy, Field-Emission scanning electron microscopy (FESEM), Energy dispersive analysis of X-rays (EDX), High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy. The photocatalytic activity of ZnBi12O20 and an incorporation of varying weight percentages of GO (1–4 wt %) into ZnBi12O20 catalyst (GZBC) were analyzed under visible light irradiation by the degradation of an aqueous solution of Methylene blue (MB) and Methyl orange (MO) dye. Among various developed nanocomposites, 3 wt% GZBC reduced graphene oxide exfoliated nanocomposites has revealed the degradation efficiency as 96.04, 94.52% at 100 and 120 min for MB and MO respectively with enriched visible light absorption range. The photocatalytic property of 3 wt % reduced graphene oxide exhibits higher degradation behavior than that of other synthesized nano-composites.  相似文献   

11.
《Ceramics International》2017,43(10):7573-7580
In this study, β-TCP/CNT nanocomposite has been synthesized by solution precipitation method. Then, the effects of the different percentage of CNT (CNT1β-TCP, CNT3β-TCP, CNT5β-TCP) and surfactant (CNT1β-TCP1SDBS, CNT1β-TCP2SDBS, CNT1β-TCP3SDBS) on β-TCP/CNT nanocomposite powder were studied. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) analyses were used to characterize the samples. The observations revealed that the microstructure of 1 wt% CNT could provide dispersion without agglomeration in nanocomposite powder; however, a higher concentration of CNT powder in the nanocomposite resulted in the formation of Ca2PO7 phase. Implementing 2 wt% of SDBS as a surfactant modified the shape, size, and distribution of CNT particles on nanocomposites. Finally, the nanocomposite sample was immersed in simulated body fluid (SBF) to evaluate the in vitro bioactivity. It obviously showed an apatite layer on the surface after 7 days of immersion in SBF. Taken together, this nanocomposite might be potentially to be used as bone repair biomaterial.  相似文献   

12.
Mesoporous anatase TiO2-pillared titanate has been successfully prepared by the exfoliation-restacking route. The resulting nanocomposite was characterized by powder X-ray diffraction, scanning electron microscope, thermogravimetric analysis, IR and UV–Vis spectroscopy, specific surface area and porosity measurements. It was revealed that the present nanocomposite exhibits greatly expanded specific surface area (~200 m2 g−1) with 2.8- and 6.6-nm-in-diameter mesopore structure, and that there exists an electronic coupling between the host titanate sheets and the guest anatase TiO2 nanoparticles in the pillared system. The results of degradation of methylene blue under ultraviolet and visible radiation show that the present nanocomposite exhibits much higher photocatalytic activities than that of TiO2 nanoparticles or layered titanate alone, which are based on the bandgap excitation and the dye sensitization.  相似文献   

13.
The present work demonstrates a facile route for preparing LaFeO3/rGO nanocomposites comprising of metal oxide nanoparticles and graphene. Structural, morphology, optical and photocatalytic studies of the samples were characterized using powder X-ray diffraction (XRD), FT-IR, Raman, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), thermogravimetry (TGA), X-ray photoelectron spectroscopy, UV–visible and photocatalytic. LaFeO3/rGO nanocomposites believed as an effective photocatalyst for the degradation of methyl orange (MO) dye under visible light irradiation. The inclusion of carbon enhances the light absorption of LaFeO3, resulting in the enhanced photocatalytic activity of the nanocomposite. The degradation of MO dye under visible light source was completely achieved using LaFeO3/rGO as a catalyst.  相似文献   

14.
《Ceramics International》2016,42(7):8120-8127
In this paper, we described a simple two–step method for preparing needle-like CoNi2S4/CNT/graphene nanocomposite with robust connection among its ternary components. The prepared CoNi2S4/CNT/graphene nanocomposite has been thoroughly characterized by spectroscopic (Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy), X-ray diffraction and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy–energy dispersive spectroscopy and transmission electron microscopy) were employed to probe the morphological structures. The electrochemical properties of the as-prepared 3D architectures were investigated with three and two-electrode systems. In addition to its high specific capacitance (710 F g−1 at 20 A g−1), after charging–discharging for 2000 cycles, the electrode still maintained the capacity retention of about 82%. When used as the active electrode material for supercapacitors, the fabricated CoNi2S4–g–CNT nanostructure exhibited excellent specific capacitance and good rate capability, making it a promising candidate for next-generation supercapacitors.  相似文献   

15.
Delafossite-structured oxides AgMO2 (M = Al, Ga, In) were successfully synthesized using fluoro(ethylene-propylene) (FEP) pouch via a facile hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), BET surface area measurement, UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the as-prepared samples was evaluated by the degradation of rhodamine B (RhB) and methyl orange (MO) under visible light irradiation. All three samples showed photocatalytic activity for RhB and MO degradation under visible light irradiations and their photocatalytic activity followed the order of AgInO2 > AgGaO2 > AgAlO2. The relative high photocatalytic activity of AgInO2 can be attributed to its high quantity of the surface hydroxyl groups. The photocatalytic mechanism of AgInO2 was proposed and its stability was also investigated.  相似文献   

16.
《Ceramics International》2021,47(21):29795-29806
In this paper, BiVO4-Cu2O nanocomposites have been synthesized by a mechano-thermal method with a controlled composition of Bi2O3, V2O5 and Cu2O contents. The effects of milling time, heat treatment temperature and composition on the structure and microstructure of the prepared samples were studied. The optical properties and photocatalytic performance of the samples under visible light irradiation were studied by Diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and dye degradation. The BiVO4 and Cu2O contents in the nanocomposite were changed and the effects on the structural stability and photocatalytic performance were studied. X-ray diffraction (XRD) patterns showed that both BiVO4 and Cu2O contents were effective on the synthesis and stability of the monoclinic phase of BiVO4. Field emission scanning electron microscopy (FESEM) micrographs indicated semi-spherical nanocomposite particles with an average particle size of 100 nm. The heterostructure at the interface between Cu2O and BiVO4 was shown by Transmission electron microscopy (TEM) and proved by X-ray photoelectron spectroscopy (XPS) spectra. DRS results indicated the minimum band gap energy of 2.12 eV for BiVO4-10 wt% of Cu2O with a 10 wt% excessive V2O5 content. The PL result has shown the lowest rate of the recombination of electron-holes for this sample. Also, the maximum degradation of 97% has been obtained for methylene blue (MB) by this sample after 240 min of being irradiated in visible light region. The photocatalytic mechanism was determined using scavengers. The kinetics of MB and methyl orange (MO) degradations was compared to study the effect of pH on the photocatalytic performance.  相似文献   

17.
《Ceramics International》2022,48(20):30294-30306
In this paper, a novel g-C3N4/2 wt% SnS2 nanocomposite was successfully synthesized using an in-situ growth of SnS2 on g-C3N4. X-ray diffraction (XRD), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET) method, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectrometer were used to characterize the photocatalysts. Exploring adsorption behavior, as an importatnt stage during photocatalytic reactions, is of great importance. Hence, both adsorption and photocatalytic performance of the synthesized photocatalysts have been investigated in detail. The adsorption isotherm fittings exhibited that Freundlich and Langmuir-Freundlich models can be applied to the methylene blue (MB) adsorption on the photocatalysts, indicating surface heterogeneity should be considered. A pseudo-second-order model was fitted to explore the adsorption kinetics. According to the observed redshift in the Fourier transform infrared spectroscopy (FTIR) result of g-C3N4/SnS2 nanocomposite, π-π interaction was dominant during MB adsorption. Also, a slight redshift and significant PL intensity reduction in g-C3N4/SnS2 nanocomposite led to 96% photocatalytic efficiency after 180 min under visible light radiation. The kinetics of photodegradation over g-C3N4/SnS2 was about 9 and 3 times higher than those of g-C3N4 and SnS2 photocatalysts, respectively. The superoxide and hydroxyl radicals were the main reactive species in the photocatalytic degradation with a Z-scheme charge transfer mechanism. The g-C3N4/SnS2 nanocomposite was found to be remarkably stable after three consecutive cycles of MB degradation.  相似文献   

18.
《Ceramics International》2023,49(16):26683-26693
In this work, zero-dimensional (0D) high crystalline PrFeO3 worm nanocrystals were loaded over a three-dimensional (3D) rectangular WO3 to construct a 0D/3D PFO/W Z-scheme heterojunction by an in situ ultrasonic synthetic process. This heterojunction exhibited excellent photocatalytic activities towards the degradation of organic pollutants such as rhodamine B (RhB), Methylene blue (MB), and tetracycline hydrochloride (TC) in the presence of small amounts of H2O2 under visible-light irradiation. For example, the k value of PFO/W + H2O2 was about 67, 107, 45, 27, 11 and 14 times higher than pure H2O2, PrFeO3, WO3, PFO/W nanocomposite, PrFeO3+ H2O2 and WO3+H2O2 respectively during the degradation of MB. The trapping experiments and ESR measurements identified that the generated ·OH, ·O2, and h+ were the active species involved in the catalysis. Further, the ·OH radical could be continuously generated by Fe3+/Fe2+ and W6+/W5+ conversion and played the dominant role in the degradation of organic pollutants. The superior photocatalytic performance of the PFO/W + H2O2 system was derived from the synergistic effect of the Z-scheme heterostructure and dual photo-Fenton-like oxidation (Fe3+/Fe2+ and W6+/W5+). A possible mechanism was postulated based on the results obtained. In summary, this study provided new insights into synthesizing an effectively heterogeneous 0D/3D Z-scheme dual photo-Fenton-like catalyst for water clarification.  相似文献   

19.
《Ceramics International》2022,48(20):29580-29588
Herein, we report the sunlight driven photocatalytic degradation of toxic organic dye, Rhodamine B using α-Bi2O3 nanosheets as an effective photocatalyst. The α-Bi2O3 nanosheets were prepared by simple annealing assisted thermal decomposition method and characterized by several techniques in order to understand its morphological, compositional, structural and optical properties. Morphological, structural and compositional investigations confirmed the formation of sheet-like morphologies, high-crystalline monoclinic crystal structure, and pure α-Bi2O3, respectively. The synthesized α-Bi2O3 nanosheets exhibited a high photocatalytic degradation of a toxic organic dye, i.e. Rhodamine B (RhB). Under optimal reaction conditions, ~95% photocatalytic degradation of RhB (10 mg/L, pH 10) was observed in 180 min using 0.75 g/L catalyst dosage under sunlight irradiation. According to the findings, the synthesized catalyst had outstanding photocatalytic properties and can be used to cleanse textile wastewater under direct sunlight.  相似文献   

20.
《Ceramics International》2021,47(20):28874-28883
The synthesis of CuFe2O4/MXene nanohybrids was carried out via an ultrasonication approach. The prepared composite material exhibited an outstanding photocatalytic performance and antibacterial activity compared to individual CuFe2O4 (CF) and MXene. The CF nanonuts (Nns) assisted the reduced aggregation of MXene layers. The structural and morphological analysis of the presented nanohybrids were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FT-IR), Electrochemical impedance spectroscopy (EIS), and ultraviolet (UV)-visible spectroscopy. The obtained sheet-to-sheet linkage provided an opportunity for the degradation of organic dyes. The photocatalyst CF/MXene nanohybrids exhibited 4.5-fold higher photocatalytic activity than pristine CF. The mechanism of degradation of methylene blue dye by CF/MXene was explained through kinetic studies. This work will offer significant scientific contributions to researchers working on water desalination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号