首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the intense demand of the developing microelectronics market, the study of giant permittivity dielectric materials is being promoted. However, it is difficult to obtain suitable dielectric materials for such applications, especially due to high dielectric loss at low frequencies. In this work, Ag+Nb codoped TiO2 ceramics were designed and fabricated in a conventional solid reaction by sintering at 1290-1340°C for 5-10 hours. The issue of how the microstructure and dielectric properties of (Ag1/4Nb3/4)0.005Ti0.995O2 ceramics are affected by the sintering conditions was discussed. By optimizing sintering conditions, a dense microstructure, a high dielectric constant (εr ≈ 9410), and a low dielectric loss (tanδ ≈ 0.037) at 1 kHz were achieved. Most importantly, the temperature coefficient value of εr at different frequencies remained stable between −14.3% and 13.7% within the temperature range from −190 to 200°C, which has potential applications in X9R capacitor.  相似文献   

2.
Due to the demand of miniaturization and integration for ceramic capacitors in electronic components market, TiO2-based ceramics with colossal permittivity has become a research hotspot in recent years. In this work, we report that Ag+/Nb5+ co-doped (Ag1/4Nb3/4)xTi1−xO2 (ANTOx) ceramics with colossal permittivity over a wide frequency and temperature range were successfully prepared by a traditional solid–state method. Notably, compositions of ANTO0.005 and ANTO0.01 respectively exhibit both low dielectric loss (0.040 and 0.050 at 1 kHz), high dielectric permittivity (9.2 × 103 and 1.6 × 104 at 1 kHz), and good thermal stability, which satisfy the requirements for the temperature range of application of X9R and X8R ceramic capacitors, respectively. The origin of the dielectric behavior was attributed to five dielectric relaxation phenomena, i.e., localized carriers' hopping, electron–pinned defect–dipoles, interfacial polarization, and oxygen vacancies ionization and diffusion, as suggested by dielectric temperature spectra and valence state analysis via XPS; wherein, electron-pinned defect–dipoles and internal barrier layer capacitance are believed to be the main causes for the giant dielectric permittivity in ANTOx ceramics.  相似文献   

3.
The dielectric properties of Cr + La co-doped CaCu3Ti4O12 ceramics prepared by a solid-state reaction method were evaluated and compared to Cr-doped, La-doped, and parent CaCu3Ti4O12 (CCTO). Their structure and grain size were evaluated by X-ray diffraction and scanning electron microscopy, respectively. No secondary phase was detected based on the XRD analysis. The results show that, the room temperature dielectric loss of the co-doped samples is reduced to 43% compared to CCTO and their dielectric permittivity is higher than the un-doped, Cr-doped, and La-doped samples at frequencies over 325 kHz, 30 kHz, and 12 Hz, respectively. Furthermore, the temperature stability of the co-doped sample is significantly more convenient than that of CCTO, and its dielectric loss is three times lower. The results also indicated that the co-doping method is effective in reducing the dielectric loss, still maintaining the high dielectric permittivity.  相似文献   

4.
《Ceramics International》2017,43(9):7271-7277
Colossal permittivity (CP, ε>104) behavior in BaTiO3–Na0.5Bi0.5TiO3 (BT-NBT) ceramics has been studied, which showed extremely high permittivity up to ~105. Dielectric properties of samples showed Debye-like relaxations in the frequency range 20 Hz–30 MHz. Two different polarizations located in grain boundaries and grains respectively are responsible for the CP behavior and the models of defect charge compensation achieved by niobium doping are proposed to explain the phenomenon of abnormal variation of dielectric constant.By using defect engineering, a Nb-doped BaTiO3 ceramics with stable colossal permittivity (εr =1.3×104 at 1 kHz and room temperature),high bulk resistivity (>1010 Ω·cm) as well as relative low dielectric loss (tanδ~0.06) has been obtained over a wide temperature range of −55–150 °C, satisfying IEA X8R specification, which has a potential application prospect in high capacity solid supercapacitor.  相似文献   

5.
The demand for capacitors exhibiting low sensitivity towards temperature changes and high power peaks has increased significantly. Recently, Na0.5Bi0.5TiO3 (NBT) based ceramics became excellent candidates for such extreme temperature capacitors. The dielectric loss of these materials is, however, difficult to control because of the complex defect chemistry of NBT based ceramics. Therefore, it is the limiting factor for high temperature applications. In this work, we present a strategy to increase the upper temperature limit for low dielectric loss. The addition of BiAlO3 to Na0.5Bi0.5TiO3-BaTiO3-CaZrO3 reduces the loss and sensitivity towards Bi evaporation during synthesis. For unmodified samples, the relative permittivity (εr = 581, at 1 kHz) varies less than 15 %, while the dielectric loss stays below 0.02 between -68 and 368 °C. With the addition of BiAlO3, the temperature range of low loss extends from -68 to 391 °C at even higher permittivity (εr = 628, at 1 kHz).  相似文献   

6.
Sr0.99Ce0.01Ti1-xO3 (SCT, x?=?0, ±?0.0025, ±?0.0050, 0.0075) ceramics were prepared by solid state reaction methods and sintered in air atmosphere at different temperatures, with a soaking time of 2?h. The dielectric properties of all samples presented excellent temperature independence over a broad temperature range from 25 to 330?℃ and frequency independence between 10?kHz and 1?MHz. Sr0.99Ce0.01Ti0.9925O3 (SCT0.9925) ceramics sintered in air atmosphere exhibited a high permittivity (~5400) and a low dielectric loss (~0.01) measured at room temperature and 1?kHz. XPS and complex impedance spectroscopy analysis confirmed that the high permittivity and low dielectric loss were attributed to the fully ionized oxygen vacancies and giant defect-dipoles in Ti-deficient samples. However, a higher dielectric loss of Ti-rich samples is owing to the destruction of giant defect dipoles, in which highly localized electrons were transformed into hopping electrons.  相似文献   

7.
Reduction of dielectric loss for CCTO ceramics is a prerequisite for their applications. Considering internal barrier layer capacitance effect, improving the capacitance and grain boundary resistance is an effective way to reduce dielectric loss. Therefore, more conductive Ti3+ and Cu+ ions were introduced to grains by adding carbon to ceramic bodies, improving the permittivity of CCTO ceramics. Annealing was performed to increase the grain boundary resistance. The dielectric loss of the CCTO ceramics thus prepared, which maintain a giant permittivity, is significantly reduced. Specifically, the CCTO ceramic with carbon addition, which was sintered at 1080 °C for 8 h and air annealed at 950 °C for 2 h, exhibits a giant permittivity of about 2.50(5)×104 and a low dielectric loss of less than 0.050(2) from below 20 Hz to 50 kHz at room temperature. Meanwhile, its dielectric loss at 1–10 kHz is less than 0.050(2) from below room temperature to about 100 °C.  相似文献   

8.
Dielectric properties of CaCu3Ti4O12 (CCTO)-based ceramics and thick films (e ~50 μm) prepared from powders synthesized by a soft chemistry method (co-precipitation) are presented and discussed. The characteristics of pellets and thick films are compared.The pellets exhibit high values of the dielectric permittivity (?r ~1.4 × 105) and relatively small dielectric losses (tan δ ~0.16) at 1 kHz and room temperature. These properties are independent of the nature of the metallization of the electrodes. In addition, the dielectric permittivity decreases when the diameter of the electrodes of the pellets increases, while the losses remain constant. This result, which is strongly related to the nature of the dielectric material in between the electrodes, constitutes a strong indication that the high dielectric permittivity values observed in this material are not related to an interfacial (electrode material) related mechanism but is an internal barrier layer capacitor (IBLC) type.Very high values of the dielectric permittivity of CCTO thick films are measured (?r ~5 × 104). The differences in dielectric permittivity between thick films and dense pellets may be attributed to the difference in grain size due to different CuO contents, and to the different reactivity of the materials.  相似文献   

9.
《Ceramics International》2023,49(12):20388-20397
The lack of systematic research on the phase structure, defect structure, and polarization mechanism hinders the full comprehension of the colossal permittivity (CP) behavior for SrTiO3-based ceramics. For this purpose, Ta-doped SrTiO3-based ceramics were synthesized in an N2 atmosphere with a traditional method. When the appropriate amount of Ta was doped, colossal permittivity (ԑr ∼ 62505), low dielectric loss (tanδ ∼ 0.07), as well as excellent temperature stability (−70 °C–180 °C, ΔC/C25°C ≤ ±15%) were obtained in the Sr0.996Ta0.004TiO3 ceramic. The relationship between Ta doping, polarization mechanism, and dielectric performance was systematically researched according to experimental analysis and theoretical calculations. The first-principle calculations indicate that the Ta5+ ion prefers to replace the Sr-site. The defect dipoles and oxygen vacancies formed by heterogeneous-ion doping play an active role in regulating the dielectric performance of ceramics. In addition, the interface barrier layer capacitance (IBLC) effect associated with semi-conductive grains and insulating grain boundaries is the primary origin of colossal permittivity for Sr1-xTaxTiO3 ceramics. The polarization mechanism and defect structure proposed in the study can be extended to the research of SrTiO3 CP ceramics. The results have a good development prospect in colossal permittivity (CP) materials.  相似文献   

10.
In this study, the dielectric properties of SrTiO3 ceramics prepared by plasma-activated sintering (PAS) were investigated. One of the striking findings is that the material exhibits giant room temperature permittivity (k∼3.5 × 104) and low dielectric loss (∼0.05) at 1 kHz, with the permittivity exceeding that of the conventionally prepared SrTiO3(ST) ceramics (k∼300) by two orders of magnitude. The enhancement of the polarizability was caused by the high concentration of defect dipoles. In this paper, two dielectric relaxation modes of the PAS ceramics below 0°C have been mainly discussed. One dielectric relaxation mode showed higher activation energy than that of the dielectric peak in the same temperature range for the conventional SrTiO3-based ceramics. This mode was sensitive to humidity, and the strength of this mode was associated with the oxygen vacancies concentration in the ceramics. The other mode exhibited abnormal slowing down of relaxation rate with increasing temperature, which is contrary to the typical dielectric relaxation behavior, and the anomaly persisted over a narrow temperature range. Both modes were observed at the same interface between the grain and grain boundaries.  相似文献   

11.
Material with high dielectric constant plays an important role in energy storage elements. (Gd + Nb) co-doped TiO2 (GNTO) ceramics with giant dielectric permittivity (>104), low dielectric loss, good temperature and frequency stability in broad range of 30–150 °C and 102–106 Hz have been systematically characterized. Especially, a low dielectric loss of 0.027 and a giant dielectric permittivity of 5.63 × 104 at 1 kHz are attained for the composition with x = 0.01. Results of complex impedance spectroscopy, I–V curve and frequency dependent dielectric constant under DC bias indicate that internal barrier layer capacitance (IBLC) effect, electrode effect and electron-pinned defect-dipole (EPDD) effect contribute to the colossal permittivity (CP) property simultaneously.  相似文献   

12.
In this work, cyclotetravanadate Na2SrV4O12 was synthesized at a relatively low sintering temperature of ∼500°C using a solid-state reaction method. X-ray diffraction and a transmission electron microscope characterization featured a tetragonal structure that was built by a 3D frame of isolated tetracyclic (V4O12)4−. Dielectric measurements demonstrated strong dependence on frequency and temperature. A low relative permittivity of εr ∼ 8 ± 0.2 and a dielectric (loss tanδ) ∼ 0.4 ± 0.01 was achieved at a frequency of 10 kHz and room temperature. ac impedance and conductivity analysis revealed a thermally activated migration behavior of charge carriers with a short-range hopping feature. XPS analysis validated the existence of oxygen vacancy and reduction in vanadium (from V5+ to V4+), which gave rise to charged lattice defects. The migration or hopping of such charged defects was responsible for the observed electrical behaviors. Owing to the simple composition, inexpensive raw materials and low density (2.99 g/cm3) make Na2SrV4O12 ceramic a potential candidate for lightweight devices and in photocatalytic degradation and all-solid-state ion batteries.  相似文献   

13.
Electrical conduction and relaxation phenomena in bismuth borate glasses in the composition 2Bi2O3–B2O3 (Bi4B2O9) were investigated. Dielectric studies carried out on these glasses revealed near constant loss response in the 1 kHz–1 MHz frequency range at moderately high temperatures (300–450 K) associated with relatively low loss (tan δ = 0.006) and high dielectric constant (εr′ = 37) at 1 kHz, 300 K. The variation in AC conductivity with temperature at different frequencies showed a cross over from near constant loss response characterized by local ion vibration within the potential well to universal Jonscher's power law dependence triggered by ion hopping between potential wells or cages. Thermal activation energy for single potential well was found to be 0.48 ± 0.05 eV from cross over points. Ionic conduction and relaxation processes were rationalized by modulus formalism. The promising dielectric properties (relatively high εr′ and low tan δ) of the present glasses were attributed to high density (93% of its crystalline counterpart), high polarizability, and low mobility associated with heavy metal cations, Bi3+.  相似文献   

14.
Due to the boom of the electronic information industry, dielectric ceramic materials are widely applied in passive components such as multilayer ceramic capacitors. In this article, Y2/3Cu3Ti4O12–TiO2 composite ceramics with outstanding dielectric properties (εr = 2.29 × 106 at 20 Hz, εr = 4.49×105 at 1 kHz) were successfully prepared by hydrothermal and in situ solid-state methods. The minimum dielectric loss value (at 1 kHz) of the obtained composite ceramics is about 0.57. The experimental results show that Y2/3Cu3Ti4O12 has a composite perovskite structure with cation vacancies, which causes internal electron-pinned defect-dipole, and the easy entry of excessive titanium ions to produce donor defects. Meanwhile, the heterogeneous grains with a pomegranate-like microstructure were observed in the prepared composite ceramics, and interfacial polarization between subgrain boundaries was substantiated by impedance analysis. The abundant weakly trapped electrons and more polarized interfaces formed by grain and subgrain boundaries are the primary sources of the excellent dielectric properties of composite ceramics.  相似文献   

15.
《Ceramics International》2021,47(24):34695-34703
Li4x/3Zn2–2xTi1+2x/3O4 microwave dielectric ceramics with a spinel phase were prepared via a high-temperature solid-phase method. P–V–L theory, vibration spectra, and XPS were utilized to establish the links between the intrinsic and extrinsic factors and the microwave dielectric properties. According to the characterization, the change in permittivity (εr) was ascribed to the increase in the average bond ionicity of Ti–O(AfiTi-O) and the polar mode of the lattice vibration; the change in quality factor(Q × f) resulted from the change in the Ti–O lattice energy (AUTi-O) and existence of oxygen vacancy; the increase in temperature coefficient of the resonance frequency (τf) was triggered by the increase in the Ti–O bond energy. The Li0.6Zn1.1Ti1.3O4 ceramics (x = 0.45) sintered at 1125 °C finally obtained optimal microwave dielectric constants of εr = 17.3, Q × f = 76,318 GHz and τf = -58 ppm/°C.  相似文献   

16.
《Ceramics International》2017,43(12):8664-8676
Single-phase Ca1−3x/2TbxCu3Ti4−xTbxO12 (0.025≤ x≤0.075) (CTCTT) ceramics with a cubic perovskite-like structure and a fine-grained microstructure (1.6‒2.3 µm) were prepared using a mixed oxides method. The results revealed that mixed valence states of Cu2+/Cu+, Ti4+/Ti3+, and Tb3+/Tb4+ coexisted in CTCTT. A multiphonon phenomenon in the Raman scattering at 1148, 1323, and 1502 cm−1 was reported for undoped and doped CTTO. Tb was mainly incorporated in the interior of the CTCTT grains rather than on the surface. The dielectric permittivity of CTCTT (εr'RT =3590‒5200) decreased relative to CCTO (εr'RT =10240) at f =1 kHz, but the dielectric loss of CTCTT (the minimum value of tan δ=0.12 at RT) increased as a result of Tb doping. The defect chemistry of CTCTT is discussed. The internal barrier layers capacitance (IBLC) model was adopted for impedance spectroscopy (IS) analysis. The activation energies of the grain boundaries (Egb) and semi-conductive grains (Eg) for CTCTT were determined to be 0.52 eV and 104 meV, respectively. The IS and defect chemistry analyses confirmed that the decrease in the dielectric permittivity was mainly due to a decrease in conductivity in the semiconducting CTCTT grains caused by the acceptor effect of Tb4+ at the Ti site, which resulted in a decrease in the IBLC effect.  相似文献   

17.
0.82[0.94Bi0.5Na0.5TiO3-0.06BaTiO3]-0.18CaZrO3:xZnO (BNT-BT-CZ:xZnO, x = 0–0.40 with interval of 0.10) high temperature dielectric composites were prepared and the structural and electrical properties were investigated. Significantly improved temperature-insensitive permittivity spectra have been observed in the composites: the temperature range for low variance in permittivity (Δεrr,150?°C < 10%) is 70–190?°C for x?=?0, whereas it is extended at least to 30–250?°C for the optimal x?=?0.10 at 1?kHz. Especially, for this optimal composite, the variance of permittivity is less than 4.0% in the temperature range of 30–400?°C with the suitable permittivity value of ~ 600 at 10?kHz. By comparatively investigating the properties of unpoled and poled samples, the improved temperature-insensitive permittivity is rationalized by the ZnO-induced local electric field that can suppress the evolution of polar nanoregions and thus enhance the temperature-insensitivity of permittivity.  相似文献   

18.
Rare–earth‐doped strontium titanate ceramics yielding the formula Re0.02Sr0.97TiO3 (Re–ST, Re = La, Sm, Gd, Er) were prepared by solid‐state reaction route. All Re–ST ceramics had single cubic perovskite structure similar to pure SrTiO3 (ST). The grain size of Re–ST ceramics dramatically decreased to 1–10 μm, depending on different rare‐earth elements, as compared to ~30 μm of pure ST. The relative dielectric constant of Re–ST ceramics (εr = 2750–4530 at 1 kHz) showed about 10–15 times higher than that of pure ST (εr = 300 at 1 kHz), whereas the dielectric loss of Re–ST ceramics still remained lower than 0.03 (at 1 kHz) at room temperature. Under 0–1.63 × 106 V/m bias electric field testing conditions, the εr of Re–ST ceramics at room temperature changed within 14%. The PE results indicated that the Re–ST ceramics were linear dielectrics. Together with their relatively high breakdown strength (Eb > 1.4 × 107 V/m), the Re–ST ceramics could be very promising for high‐voltage capacitor applications. Meanwhile, the temperature stability of the εr of Re–ST ceramics was evaluated in a temperature range of ?60°C–200°C.  相似文献   

19.
Multiple ion substitutions to Na0.5Bi0.5TiO3 give rise to favourable dielectric properties over the technologically important temperature range ?55?°C to 300?°C. A relative permittivity, εr,?=?1300?±?15% was recorded, with low loss tangent, tanδ?≤?0.025, for temperatures from 310?°C to 0?°C, tanδ increasing to 0.05 at ?55?°C (1?kHz) in the targeted solid solution (1–x)[0.85Na0.5Bi0.5TiO3–0.15Ba0.8Ca0.2Ti1-yZryO3]–xNaNbO3: x?=?0.3, y?=?0.2. The εr-T plots for NaNbO3 contents x?<?0.2 exhibited a frequency-dependent inflection below the temperature of a broad dielectric peak. Higher levels of niobate substitution resulted in a single peak with frequency dispersion, typical of a normal relaxor ferroelectric. Experimental trends in properties suggest that the dielectric inflection is the true relaxor dielectric peak and appears as an inflection due to overlap with an independent broad dielectric peak. Process-related cation and oxygen vacancies and their possible contributions to dielectric properties are discussed.  相似文献   

20.
Giant dielectric ceramic, Na1/2Sm1/2Cu3Ti4O12, was successfully prepared by a modified sol-gel method. X-ray diffraction experiments indicated that a body-centered cubic structure with a space group of Im3 was obtained. Our density functional theory calculations revealed that codoping Na and Sm in the CaCu3Ti4O12 structure resulted in charge compensation between Na and Sm ions in this structure, whereas the oxidation states of Cu and Ti were unaltered. Giant dielectric permittivity ~7.21 × 103 - 8.04 × 103 and low dielectric loss tangent ~0.045–0.049 were accomplished at a sintering temperature of 1050 °C for 12–18 h. Nonlinear J - E property with breakdown electric field ~5.13 – 5.78 × 103 V/cm and nonlinear coefficient ~6.08–6.82 were also achieved. The n-type semiconducting grain originated from short-range migrations of mixed Cu+/Cu2+ and Ti3+/Ti4+ charges. Finally, our charge analysis showed that the occurrence of Cu+ and Ti3+ was related to the existence of oxygen vacancy in these ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号