首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Cenk Sayin 《Fuel》2010,89(11):3410-3415
In this study, the effects of methanol-diesel (M5, M10) and ethanol-diesel (E5, E10) fuel blends on the performance and exhaust emissions were experimentally investigated. For this work, a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine was used. The tests were performed by varying the engine speed between 1000 and 1800 rpm while keeping the engine torque at 30 Nm. The results showed that brake specific fuel consumption and emissions of nitrogen oxides increased while brake thermal efficiency, smoke opacity, emissions of carbon monoxide and total hydrocarbon decreased with methanol-diesel and ethanol-diesel fuel blends.  相似文献   

2.
Jie Zhang  Yunshan Ge 《Fuel》2009,88(3):504-6689
To study the effects of fuel sulfur content on the characteristics of diesel particle emitted from a typical engine used in China, two types of diesel fuel with sulfur content of 30 ppm and 500 ppm were used in this engine dynamometer test under six operation conditions corresponding to 20%, 50% and 80% load at 1400 rpm and 2300 rpm engine speeds, respectively. Gaseous pollutants and particulate matter (PM) emissions were sampled with AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp), respectively. More specifically, the PM mass, total carbon (TC), organic carbon (OC), elemental carbon (EC) and water-soluble ion distribution were also measured. Compared with high sulfur diesel, the application of low sulfur diesel can lower fuel-based PM emissions by 9.2-56.6%. At 1400 rpm, the low sulfur diesel decreased both OC and EC by 5-34% and about 20%; while at 2300 rpm, the low sulfur fuel decreased OC by 33-57% and increased EC emission, resulting in a lower OC/EC ratio. The evidence implicating that OC oxidation was promoted by low sulfur diesel, but the effect on EC oxidation was dependent on engine speed. The linear regression has been conducted between TC and PM10, and the slopes were 0.88 and 0.80 for low sulfur diesel and high sulfur one, respectively. Higher sulfate content was detected in the 0.13 μm particles when using the high sulfur diesel, but the percentage of sulfate was 0.9% for PM10 from both diesel fuels. Comparing with that of 500 ppm, EC increased sharply to a maximum of 114% in particles of 0.13 μm when using 30 ppm sulfur diesel at 2300 rpm.  相似文献   

3.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency.  相似文献   

4.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

5.
T. Lakshmanan  G. Nagarajan 《Fuel》2011,90(8):2571-2577
As the world finds itself in the midst of universal energy shortage, compounded by a parallel need to reduce pollutants of all kinds; we must take serious look at novel sources of abundant energy and methodology of its use. Acetylene with its remarkable combustion properties appear to be proving itself as the best fuel for future internal engines if it is utilised properly. Because of inherent difficulties in handling acetylene, technology has emphasized the utilization of acetylene by injection techniques to combat back fire in internal combustion engines. An experimental investigation was carried out on a single cylinder, air cooled, DI diesel engine designed to develop 4.4 kW at 1500 rpm. Acetylene was injected into the intake port as a secondary fuel and diesel was injected directly into the cylinder. The optimized injection time of 5° aTDC and injection duration of 90 °CA (9.9 ms) was arrived. The gas flow rate was fixed at 110 g/h, 180 g/h and 240 g/h. The combustion, performance and emission parameters were studied for the above flow rates by varying the load from low load to full load. Results show that NOx, HC and CO emissions reduced when compared to diesel operation due to leaner operation. A marginal increase in smoke emission was observed and brake thermal efficiency was nearer to diesel operation. On the whole it is concluded that without loss in thermal efficiency, safe operation of acetylene is possible in timed port injection technique. Reduced NOx, HC and CO emission levels, with marginal increase in smoke emission level were achieved.  相似文献   

6.
Cenk Sayin  Mustafa Canakci 《Fuel》2010,89(7):1407-1414
In this study, the effects of injection pressure and timing on the performance and emission characteristics of a DI diesel engine using methanol (5%, 10% and 15%) blended-diesel fuel were investigated. The tests were conducted on three different injection pressures (180, 200 and 220 bar) and timings (15°, 20°, and 25° CA BTDC) at 20 Nm engine load and 2200 rpm. The results indicated that brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and nitrogen oxides (NOx) emissions increased as brake thermal efficiency (BTE), smoke opacity, carbon monoxide (CO) and total unburned hydrocarbon (THC) decreased with increasing amount of methanol in the fuel mixture. The best results were achieved for BSFC, BSEC and BTE at the original injection pressure and timing. For the all test fuels, the increasing injection pressure and timing caused to decrease in the smoke opacity, CO, THC emissions while NOx emissions increase.  相似文献   

7.
This paper analyses the fuel injection characteristics of bioethanol-diesel fuel and bioethanol-biodiesel blends considered as fuel for diesel engines. Attention is focused on the injection characteristics which significantly influence the engine characteristics and subsequently the exhaust emissions. In this context the following injection characteristics have been investigated experimentally: fuelling, injection timing, injection delay, injection duration, mean injection rate, and injection pressure. The tested fuels were neat mineral diesel fuel, neat biodiesel made from rapeseed oil, bioethanol/diesel fuel and bioethanol/biodiesel blends up to 15% (v/v) bioethanol with an increment of 5%. The fuels blends were experimentally investigated in a fuel injection M system at rated condition (FL, 1100 rpm), peak torque (FL, 850 rpm), and maximum pump speed (1100 rpm) for different partial loads (PL 75% and PL 50%), at ambient temperature.It has been proven that for all operating regimens tested, the addition of bioethanol to biodiesel reduces fuelling, injection timing, injection duration, mean injection rate and maximum injection pressure and increases injection delay compared to pure biodiesel. Meanwhile, increasing bioethanol in diesel fuel shows no significant variations or a slightly increase in fuelling, injection timing, injection duration, and mean injection rate and a decrease in injection delay and maximum injection pressure, compared to pure diesel fuel.The influence of bioethanol in biodiesel is much more significant that in diesel fuel; it has a beneficial effect on biodiesel injection characteristics because bioethanol addition brings them nearer to the diesel fuel one and it is expected to decrease biodiesel NOx emissions.  相似文献   

8.
The effects of ignition system, compression ratio, and methanol injector configuration on the brake thermal efficiency (BTE) and combustion of a high-compression direct-injection spark-ignition methanol engine under light loads were investigated experimentally, and its BTE was compared with its diesel counterpart. The experimental results showed that these factors significantly affect the fuel economy under light load. The BTE of a methanol engine using a high-energy multi-spark-ignition system is on average 25% higher than that of one using a single-spark-ignition system at a brake mean effective pressures (BMEP) of 0.11-0.29 MPa and an engine speed of 1600 rpm. Decreasing the compression ratio of the methanol engine from 16:1 to 14:1 markedly increases the BTE under low loads and decreases the BTE at high loads. For the methanol engine, using an injector of a 10-hole × 0.30 mm nozzle decreases the ignition delay and improves the fuel economy compared to when an injector of a 7-hole × 0.45 mm nozzle is used. The combustion duration using an injector of a 7-hole × 0.45 mm nozzle is much longer than that with one of a 10-hole × 0.30 mm nozzle under light loads. As a result, the BTE for a methanol engine with optimal parameters is improved by 27% compared to that for a methanol engine without optimized parameters at a BMEP of 0.17 MPa and an engine speed of 1600 rpm, but the BTE of the optimized methanol engine is 20% lower than that of its diesel counterpart under these operating conditions.  相似文献   

9.
Jo-Han Ng  Suyin Gan 《Fuel》2011,90(8):2700-2709
In this two-phase experimental programme, key effects of different biodiesel fuels and their blends on engine-out responses of a light-duty diesel engine were investigated. Here, coconut methyl ester (CME), palm methyl ester (PME) and soybean methyl ester (SME) were tested to represent the wide spectrum of degree of saturations in the fatty acid composition. Fossil diesel which served as the blending component was used as the baseline fuel for benchmarking purposes. Phase I examined how engine speed and load affect patterns of variation in tailpipe emissions and engine performance parameters for the test fuels. Here, the trends in engine-out responses across the operational speed-load map for all the tested biodiesel fuels were similar and consistent throughout. However, there were marked differences in the levels of equivalence ratio and specific fuel consumption, as well as exhaust concentrations of CO, UHC and smoke opacity. This is mainly due to differences in fuel properties, especially fuel-bound oxygen content, density and impurity level. Phase II appraised the performance of 31 different fuel blend combinations of fossil diesel blended with CME, PME or SME at 10 vol.% interval under a steady-state test cycle. The use of biodiesel fuels with low to moderate degree of unsaturation was found to conclusively reduce regulated emission species of UHC, NO and smoke opacity levels by up to 41.7%, 5.4% and 61.3%, respectively. This is in contrast to the performance of the highly unsaturated SME, where CO, UHC, NO and smoke opacity levels are higher in relation to that of fossil diesel. Simultaneous NO-smoke reduction can be achieved through the introduction of at least 1 vol.% of PME or 50 vol.% of CME into diesel fuel, although minor trade-off in the higher specific fuel consumption is observed.  相似文献   

10.
This study discusses the performance and combustion characteristics of a direct injection (DI) diesel engine fueled with biodiesels such as waste (frying) palm oil methyl ester (WPOME) and canola oil methyl ester (COME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant engine speed mode (1500 rpm) under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME, the engine performance slightly weakened; the combustion characteristics slightly changed when compared to petroleum based diesel fuel (PBDF). The biodiesels caused reductions in carbon monoxide (CO), unburned hydrocarbon (HC) emissions and smoke opacity, but they caused to increases in nitrogen oxides (NOx) emissions.  相似文献   

11.
Non-edible jatropha (Jatropha curcas), karanja (Pongamia pinnata) and polanga (Calophyllum inophyllum) oil based methyl esters were produced and blended with conventional diesel having sulphur content less than 10 mg/kg. Ten fuel blends (Diesel, B20, B50 and B100) were tested for their use as substitute fuel for a water-cooled three cylinder tractor engine. Test data were generated under full/part throttle position for different engine speeds (1200, 1800 and 2200 rev/min). Change in exhaust emissions (Smoke, CO, HC, NOx, and PM) were also analyzed for determining the optimum test fuel at various operating conditions. The maximum increase in power is observed for 50% jatropha biodiesel and diesel blend at rated speed. Brake specific fuel consumptions for all the biodiesel blends with diesel increases with blends and decreases with speed. There is a reduction in smoke for all the biodiesel and their blends when compared with diesel. Smoke emission reduces with blends and speeds during full throttle performance test.  相似文献   

12.
A.P. Sathiyagnanam  C.G. Saravanan 《Fuel》2008,87(10-11):2281-2285
The objective of this investigation was to improve the performance of a diesel engine by adding oxygenated fuel additives of known percentages. The fuel additives di-methoxy-methane (DMM) and di-methoxy-propane (DMP) were separately blended with diesel fuel in proportions of 1 ml, 3 ml and 5 ml. The experimental study was carried out on a single cylinder DI diesel engine. The result showed an appreciable reduction of emissions such as smoke density, particulate matter and marginal increase in the performance when compared with normal diesel run. The same engine was employed with diesel particulate trap (DPT) in the exhaust pipe to study its influence on the emission analysis.  相似文献   

13.
S. Bajpai 《Fuel》2009,88(4):705-711
Karanja (Pongamia pinnata) oil, a non-edible high viscosity (27.84 cSt at 40 °C) straight vegetable oil, was blended with conventional diesel in various proportions to evaluate the performance and emission characteristics of a single cylinder direct injection constant speed diesel engine. Diesel and karanja oil fuel blends (5%, 10%, 15%, and 20%) were used to conduct short-term engine performance and emission tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over the entire range of engine operation and engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature, and exhaust emissions (smoke, CO, CO2, HC, NOx, and O2) were recorded. The brake specific energy consumption (BSEC), brake thermal efficiency (BTE), and exhaust emissions were evaluated to determine the optimum fuel blend. Higher BSEC was observed at full load for neat petro-diesel. A fuel blend of 10% karanja oil (KVO10) showed higher BTE at a 60% load. Similarly, the overall emission characteristics were found to be best for the case of KVO10 over the entire range of engine operation.  相似文献   

14.
Tie Li  Masaru Suzuki  Hideyuki Ogawa 《Fuel》2009,88(10):2017-354
The effects of ethyl tert-butyl ether (ETBE) addition to diesel fuel on the characteristics of combustion and exhaust emissions of a common rail direct injection diesel engine with high rates of cooled exhaust gas recirculation (EGR) were investigated. Test fuels were prepared by blending 0, 10, 20, 30 and 40 vol% ETBE to a commercial diesel fuel. Increasing ETBE fraction in the fuel helps to suppress the smoke emission increasing with EGR, but a too high fraction of ETBE leads to misfiring at higher EGR rates. While the combustion noise and NOx emissions increase with increases in ETBE fraction at relatively low EGR rates, they can be suppressed to low levels by increasing EGR. Though there are no significant increases in THC and CO emissions due to ETBE addition to diesel fuel in a wide range of EGR rates, the ETBE blended fuel results in higher aldehyde emissions than the pure diesel fuel at relatively low EGR rates. With the 30% ETBE blended fuel, the operating load range of smokeless, ultra-low NOx (<0.5 g/kWi h), and efficient diesel combustion with high rates of cooled EGR is extended to higher loads than with the pure diesel fuel.  相似文献   

15.
The present work focuses on an experimental comparison of diesel emissions produced by three fuels: an ultra low sulfur diesel fuel (BP15), a pure soybean methyl-ester biodiesel fuel (B100), and a synthetic Fischer-Tropsch fuel (FT), practically free of sulfur and aromatic compounds, and produced in a gas-to-liquid process. The study was carried out using a 2.5 L direct injection common-rail turbodiesel engine operated at 2400 rpm and 64 N m torque (19% of maximum torque). The engine was tested with single and split (pilot and main) injections and without exhaust gas recirculation (EGR). The study has two objectives. The first objective is to investigate the impact of the start of injection (SOI) on performance and emissions of each fuel. The second objective is to study the isolated impacts of the test fuels on pollutant emissions by adjusting the injection parameters (SOI and fuel rail pressure) for each fuel, while producing practically the same combustion phasing. When the combustion phasing occurs similarly, this study has confirmed that the FT fuel can reduce all regulated diesel emissions under both single and split injection strategies. Finally, it has been confirmed that biodiesel can reduce particle mean diameter in comparison with BP15. However, higher PM mass emission for B100 has been observed under the condition of matched combustion phasing. The increase of the PM mass emission is probably due to the unburned or partially burned hydrocarbon (HC) emissions.  相似文献   

16.
The operation of four – stroke diesel engines in either propulsion or generator mode application has a strong influence on gaseous, smoke (soot) and particulates emissions. Tests were made with a supercharged after-cooled large-scale diesel engine (mean speed  500 rpm, power per cylinder  1 MW) burning mainly heavy fuel oil. Gaseous emissions (NOx, CO, HC) were measured according to the IMO technical code, smoke (soot) emissions were determined optically and particulate matter (PM) was measured using a gravimetric impactor for five size fractions. Impact on gaseous emissions, smoke (soot) and PM was found when analysing the effects of the engine operating mode, fuel nozzle, start of injection (SOI), and load (speed). Results show that the exhaust emission was also highly dependent on the engine turbocharger system, especially the by-pass control, but was not affected by waste gate control. The gaseous and soot emissions were less for the generator mode in the total load region, decreasing with the load. PM emissions were found to decrease with the load for the propulsion mode, while showing an increase with the load for the generator mode.  相似文献   

17.
The effect of diesel fuel and operation mode on diesel particulate matter (PM) emissions was studied using a combination of a gravimetric impactor (DGI) and SEM/EDX analysis of PM particles from 0.005 to 2.5 μm aerodynamic size. Tests were made with heavy fuel oil (HFO) and light fuel oil (LFO) with medium speed (500 rpm), turbo-charged, power per cylinder ~1 MW, multivariable large-scale diesel engines. Diesel PM was sampled from diluted and cooled exhaust gases. The sampled PM was found to be primarily made of carbon and sulphur derived from the fuel and lube oil but contain several other chemical species as well. In this paper the submicron particle size range (0.2-0.5 μm and 0.5-1.0 μm) is discussed. The EDX analysis gave reasonably accurate quantitative results featuring the important elements present in the samples, namely, C, O, Mg, Si, S, Cl, Ca, V, Fe, Ni, Zn (and Al). The results indicate that the finest particles originate primarily from the fuel while the somewhat larger particles contain also significant amounts of elements derived from the lubrication oil. As expected, the concentrations of sulphur and certain metallic elements such as V, Ni, Ca, Zn, Fe, Mg are significantly higher in diesel PM from HFO firing than for LFO firing.  相似文献   

18.
P.K. Sahoo  M.K.G. Babu  S.N. Naik 《Fuel》2007,86(3):448-454
Non-edible filtered high viscous (72 cSt at 40 °C) and high acid value (44 mg KOH/gm) polanga (Calophyllum inophyllum L.) oil based mono esters (biodiesel) produced by triple stage transesterification process and blended with high speed diesel (HSD) were tested for their use as a substitute fuel of diesel in a single cylinder diesel engine. HSD and polanga oil methyl ester (POME) fuel blends (20%, 40%, 60%, 80%, and 100%) were used for conducting the short-term engine performance tests at varying loads (0%, 20%, 40%, 60%, 80%, and 100%). Tests were carried out over entire range of engine operation at varying conditions of speed and load. The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) were calculated from the recorded data. The engine performance parameters such as fuel consumption, thermal efficiency, exhaust gas temperature and exhaust emissions (CO, CO2, HC, NOx, and O2) were recorded. The optimum engine operating condition based on lower brake specific fuel consumption and higher brake thermal efficiency was observed at 100% load for neat biodiesel. From emission point of view the neat POME was found to be the best fuel as it showed lesser exhaust emission as compared to HSD.  相似文献   

19.
《Fuel》2006,85(14-15):2187-2194
In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification.  相似文献   

20.
Lei Zhu  C.S. Cheung  W.G. Zhang 《Fuel》2011,90(5):1743-1750
In this study, Euro V diesel fuel, biodiesel, and ethanol-biodiesel blends (BE) were tested in a 4-cylinder direct-injection diesel engine to investigate the combustion, performance and emission characteristics of the engine under five engine loads at the maximum torque engine speed of 1800 rpm. The results indicate that when compared with biodiesel, the combustion characteristics of ethanol-biodiesel blends changed; the engine performance has improved slightly with 5% ethanol in biodiesel (BE5). In comparison with Euro V diesel fuel, the biodiesel and BE blends have higher brake thermal efficiency. On the whole, compared with Euro V diesel fuel, the BE blends could lead to reduction of both NOx and particulate emissions of the diesel engine. The effectiveness of NOx and particulate reductions increases with increasing ethanol in the blends. With high percentage of ethanol in the BE blends, the HC, CO emissions could increase. But the use of BE5 could reduce the HC and CO emissions as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号