首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Parallel beamforming is a commonly used method for increasing the frame rate in ultrasound imaging systems. By receiving in several directions for each transmission, the frame rate is increased. However, this method also introduces blocklike artifacts in the B-mode image, due to the reception offsets when compared with the transmission direction. The synthetic transmit beam technique (STB) has been previously proposed as a compensation technique when addressing these artifacts. Previous work by Hergum et al. investigated the performance of this method in regard to the case of 2 parallel beams in tissue mimicking phantoms without aberrations. This study is a continuation of that work in which this method is tested in an aberrating environment using 4 parallel beams. Several quantitative and qualitative performance aspects of this method have been investigated such as lateral shift invariance, beam-to-beam correlation fluctuations, speckle- tracking performance, improvements from higher order STB interpolation and beam profile shape preservation, as well as perceived image quality improvements. The results were obtained from simulations, in vivo measurements, and in vitro measurements. The results showed that aberration amplified the image artifacts for regular parallel beamforming, which resulted in more shift variance, lower beam-to-beam correlation, higher speckle- tracking error, and more variation in beam profile shape. Compared with regular parallel beamforming, STB resulted in a significantly better image quality and a higher score in all measuring methods. The improvements from using STB were largest in cases involving aberration. Using STB, the variation in beam-to-beam correlation was reduced from 30% to 1%, and the standard deviation of the speckle-tracking error was reduced from 8% to 1.5%.  相似文献   

2.
In this paper, a new compounded direct pixel beamforming (CDPB) method is presented to remove blurring artifacts introduced by ultrasound scan conversion. In CDPB, receive focusing is directly performed on each display pixel in Cartesian coordinates using the raw RF data from adjacent transmit firings so that artifacts from the scan conversion can be removed. In addition, the energy variations resulting from the distance between the transmit scanline and display pixel are compensated by utilizing the gain factor obtained from the ultrasound beam pattern. The proposed CDPB method was evaluated using simulation and in vivo liver data acquired by a commercial ultrasound machine equipped with a research package. The experimental results showed that the proposed CDPB method improved the information entropy contrast (IEC) by 23.6% compared with the conventional scan conversion method and it reduced the blocking artifacts factor (BAF) by 16.4% over the direct pixel-based focusing method. These results indicate the proposed new direct pixel beamforming method could be used to enhance image quality in medical ultrasound imaging.  相似文献   

3.
Recently, significant improvement in image resolution has been demonstrated by applying adaptive beamforming to medical ultrasound imaging. In this paper, we have used the minimum-variance beamformer to show how the low sidelobe levels and narrow beamwidth of adaptive methods can be used, not only to increase resolution, but also to enhance imaging in several ways. By using a minimum-variance beamformer instead of delay-and-sum on reception, reduced aperture, higher frame rates, or increased depth of penetration can be achieved without sacrificing image quality. We demonstrate comparable resolution on images of wire targets and a cyst phantom obtained with a 96-element, 18.5-mm transducer using delay-and-sum, and a 48-element, 9.25-mm transducer using minimum variance. To increase frame rate, fewer and wider transmit beams in combination with several parallel receive beams may be used. We show comparable resolution to delay-and-sum using minimum variance, 1/4th of the number of transmit beams and 4 parallel receive beams, potentially increasing the frame rate by 4. Finally, we show that by lowering the frequency of the transmitted beam and beamforming the received data with the minimum variance beamformer, increased depth of penetration is achieved without sacrificing lateral resolution.  相似文献   

4.
A method for real-time three-dimensional (3-D) ultrasound imaging using a mechanically scanned linear phased array is proposed. The high frame rate necessary for real-time volumetric imaging is achieved using a sparse synthetic aperture beamforming technique utilizing only a few transmit pulses for each image. Grating lobes in the two-way radiation pattern are avoided by adjusting the transmit element spacing and the receive aperture functions to account for the missing transmit elements. The signal loss associated with fewer transmit pulses is minimized by increasing the power delivered to each transmit element and by using multiple transmit elements for each transmit pulse. By mechanically rocking the array, in a way similar to what is done with an annular array, a 3-D set of images can be collected in the time normally required for a single image.  相似文献   

5.
Spatial resolution of an ultrasound image is limited by diffraction of ultrasound as it propagates along the axial direction. This paper proposes a method for reducing the diffraction spreading effect of ultrasound by using a synthetic aperture focusing (SAF) method that uses plane waves instead of spherical waves. The new method performs data acquisition and beamforming in the same manner as conventional SAF methods. The main difference is that all array elements are used on each firing to generate a plane wave, the traveling angle of which varies with the position of a receive subaperture. On reception, each scan line is formed by synthesizing RF samples acquired by relevant receive subapertures with delays to force the plane waves to meet at each imaging point. Theoretical analysis and computer simulation with infinite transmit aperture show that the proposed method is capable of suppressing the diffraction of ultrasound and especially causing the lateral beam width to remain unchanged beyond a certain depth determined by the size of a receive subaperture and the maximum traveling angle of plane waves. It is demonstrated that the proposed method is realizable using a linear array transducer. It is also shown that the lateral radiation pattern produced by the proposed method has smaller beam width than that using conventional SAF methods in the region of interest because it suppresses the diffraction of ultrasound.  相似文献   

6.
The oscillating profile naturally present in ultrasound images has been shown to be extremely valuable in different applications, particularly in motion estimation. Recent studies have shown that it is possible to produce images with transverse oscillations (TOs) based on a specific type of beamforming. However, there is still a great difference between the nature of the lateral oscillations produced with current methods and the axial profile of ultrasound images. In this study, we propose to combine synthetic aperture imaging (synthetic transmit aperture, STA) using a specific beamformer in both transmit mode and receive mode combined with a heterodyning demodulation method to produce lateral radiofrequency signals (LRFs). The aim was to produce lateral signals as close as possible to conventional axial signals, which would make it possible to estimate lateral displacements with the same accuracy as in the axial direction. The feasibility of this approach was validated in simulation and experimentally on an ultrasound research platform, the Ultrasonix RP system. We show that the combination of STA and the heterodyning demodulation can divide the wavelength of the LRF signals by 4 and divide the width of the lateral envelope of the point spread function (PSF) by 2 compared with the previous approaches using beamforming in receive mode only. Finally, we also illustrate the potential of our beamforming for motion estimation compared with previous TO methods.  相似文献   

7.
8.
Ultrasound imaging can be improved with higher order arrays through elevation dynamic focusing in future, higher channel count systems. However, modifications to current system hardware could yield increased imaging depth-of-field with 1.75D arrays (arrays with individually addressable elements, several rows in elevation) through the use of synthetic elevation imaging. We describe synthetic elevation beamforming methods and its implementation with our 8 /spl times/ 128, 1.75D array (Tetrad Co., Englewood, CO). This array has been successfully interfaced with a Siemens Elegra scanner for summed RF and single channel RF data acquisition. Individual rows of the 8 /spl times/ 128 array can be controlled, allowing for different aperture configurations on transmit and receive beamforming. Advantages of using this array include finer elevation sampling, a larger array footprint for aberration measurements, and elevation focusing. We discuss system tradeoffs that occur in implementing synthetic receive and synthetic transmit/receive elevation focusing and show significant image quality improvements in simulation and phantom data results.  相似文献   

9.
When imaging the heart, good temporal resolution is beneficial for capturing the information of short-lived cardiac phases (in particular, the isovolumetric phases). To increase the frame rate, parallel beamforming is a commonly used technique for fast cardiac imaging. Conventionally, a 4 multiple-line-acquisition (4MLA) system increases the frame rate by a factor of 4, making use of a broadened transmit beam to reduce block-like artifacts. As an alternative, it has been proposed to transmit an unfocused beam (i.e., plane wave or diverging wave) for which a large number of parallel receive beams (i.e., 16) can be formed for each transmit. However, to keep the spatial resolution acceptable in these approaches, spatial compounding of overlapping successive transmits is required. As a result, the effective gain in frame rate is similar to that of a 4MLA system. To date, it remains unclear how conventional 4MLA compares to plane-wave or diverging-wave imaging when operating at similar frame rate. The goal of this study was therefore to directly contrast the performance of these beamforming methods by computer simulation. In this study, the performance of 4 different imaging systems was investigated by quantitatively evaluating the characteristics of their beam profiles. The results showed that the conventional 4MLA and plane wave imaging were very competitive imaging strategies when operating at a similar frame rate. 4MLA performed better in the near field (i.e., 10 to 50 mm), whereas plane-wave imaging had better beam profiles in the far field (i.e., 50 to 90 mm). Although diverging-wave imaging had the poorest performance in the present study, it could potentially be improved by optimizing the settings.  相似文献   

10.
A real-time 3-D imaging system requires the development of a beamformer that can generate many beams simultaneously. In this paper, we discuss and evaluate a suitable synthetic aperture beamformer. The proposed beamformer is based on a pipelined network of high speed digital signal processors (DSP). By using simple interpolation-based beamforming, only a few calculations per pixel are required for each channel, and an entire 2-D synthetic aperture image can be formed in the time of one transmit event. The performance of this beamformer was explored using a computer simulation of the radiation pattern. The simulations were done for a full 64-element array and a sparse array with the same receive aperture but only five transmit elements. We assessed the effects of changing the sampling rate and amplitude quantization by comparing the relative levels of secondary lobes in the radiation patterns. The results show that the proposed beamformer produces a radiation pattern equivalent to a conventional beamformer using baseband demodulation, provided that the sampling rate is approximately 10 times the center frequency of the transducer (34% bandwidth pulse). The simulations also show that the sparse array is not significantly more sensitive to delay or amplitude quantization than the full array.  相似文献   

11.
This paper describes a new technique for two-dimensional (2-D) imaging of the motion vector at a very high frame rate with ultrasound. Its potential is experimentally demonstrated for transient elastography. But, beyond this application, it also could be promising for color flow and reflectivity imaging. To date, only axial displacements induced in human tissues by low-frequency vibrators were measured during transient elastography. The proposed technique allows us to follow both axial and lateral displacements during the shear wave propagation and thus should improve Young's modulus image reconstruction. The process is a combination of several ideas well-known in ultrasonic imaging: ultra-fast imaging, multisynthetic aperture beamforming, 1-D speckle tracking, and compound imaging. Classical beamforming in the transmit mode is replaced here by a single plane wave insonification increasing the frame rate by at least a factor of 128. The beamforming is achieved only in the receive mode on two independent subapertures. Comparison of successive frames by a classical 1-D speckle tracking algorithm allows estimation of displacements along two different directions linked to the subapertures beams. The variance of the estimates is finally improved by tilting the emitting plane wave at each insonification, thus allowing reception of successive decorrelated speckle patterns.  相似文献   

12.
A high performance ultrasound imaging system requires accurate control of the amplitude of the array elements, as well as of the time delays between them, both in the transmit and receive modes. In transmission, conventional array aperture windowing implies a different driving voltage for each element of the array, an expensive solution for systems with a large number of channels. In this paper, we present a simple, versatile, and inexpensive beamforming method that operates the aperture windowing in the transmit mode, simply controlling the lengths of the electric pulses driving the array elements. Computer simulations and experimental measurements are presented for different types of arrays. They confirm that the proposed beamforming technique improves the contrast resolution of the imaging system, reducing the off-axis intensity of the radiated field pattern. Moreover, the axial resolution is slightly enhanced, because the overall length of the transmitted ultrasonic pulse is reduced.  相似文献   

13.
A small element-to-element pitch (~.5λ) is conventionally required for phased array ultrasound transducers to avoid large grating lobes. This constraint can introduce many fabrication difficulties, particularly in the development of highfrequency phased arrays at operating frequencies greater than 30 MHz. In this paper, a new transmit beamforming technique along with sign coherence factor (SCF) receive beamforming is proposed to suppress grating lobes in large-pitch phased-array transducers. It is based on splitting the transmit aperture (N elements) into N/K transmit elements and receive beamforming on all N elements to reduce the temporal length of the transmit grating lobe signal. Therefore, the use of synthetic aperture beamforming, which can introduce relative phase distortions between the echoes received over many transmit events, can be avoided. After each transmit-receive event, the received signals are weighted by the calculated SCF to suppress the grating lobes. After pulsing all sub-apertures, the RF signals are added to generate one line of the image. Simulated 2-way radiation patterns for different K values show that grating lobes can be suppressed significantly at different steering angles. Grating lobes can be suppressed by approximately 20 dB with K = 2 at steering angles greater than 25° and an element pitch greater than 0.75λ. A technique for determining the optimal transmit sub-apertures has been developed.  相似文献   

14.
In this paper, we propose a modified electronic Fresnel-based beamforming method for low-cost portable ultrasound systems. This method uses a unique combination of analog and digital beamforming methods. Two versions of Fresnel beamforming are presented in this paper: 4-phase (4 different time delays or phase shifts) and 8-phase (8 different time delays or phase shifts). The advantage of this method is that a system with 4 to 8 transmit channels and 2 receive channels with a network of switches can be used to focus an array with 64 to 128 elements. The simulation and experimental results show that Fresnel beamforming image quality is comparable to traditional delay-and-sum (DAS) beamforming in terms of spatial resolution and contrast-to-noise ratio (CNR) under certain system parameters. With an f-number of 2 and 50% signal bandwidth, the experimental lateral beamwidths are 0.54, 0.67, and 0.66 mm and the axial pulse lengths are 0.50, 0.51, and 0.50 mm for DAS, 8-phase, and 4-phase Fresnel beamforming, respectively. The experimental CNRs are 4.66, 4.42, and 3.98, respectively. These experimental results are in good agreement with simulation results.  相似文献   

15.
We propose an all point transmit and receive focusing method based on transmit synthetic focusing combined with receive dynamic focusing in a linear array transducer. In the method, on transmit, a virtual source element is assumed to be located at the transmit focal depth of conventional B-mode imaging systems, and transmit synthetic focusing is used in two half planes, one before and the other after the transmit focal depth, using the RF data of each scanline, together with all other relevant RF scanline data previously stored. The proposed new method uses the same data acquisition scheme as the conventional focusing method while maintaining the same frame rate via high-speed signal processing, but it is not suitable for imaging moving objects. It improves upon the lateral resolution and sidelobe level at all imaging depths. Also, it increases the transmit power and image signal-to-noise ratio (SNR), due to transmit field synthesis, and extends the image penetration depth as well. Evaluations with simulation and experimental data show much improvement in resolution and SNR at all imaging depths.  相似文献   

16.
The synthetic axial acquisition (SAA) approach presented here is designed to produce C-scan images using low-cost, low bandwidth, front end electronics.We exploit plane wave transmission and shallow C-scan imaging of non-moving, or slowly moving, tissue regions. Between each transmit/receive cycle, the receive sampling trigger is offset by one sampling interval so that over a sequence of acquisitions a sufficiently long data record is synthesized to enable a high-quality approximation to conventional delay and sum beamforming. FIELD II simulations were performed to model the next generation of our sonic window C-scan imaging system using a 5 MHz center frequency, 50% bandwidth, and a 60x60 fully sampled two-dimensional (2- D) array with a 0.3-mm element pitch. These simulations, which include analysis of the impact of target motion both parallel and perpendicular to the acoustic beam, indicate that SAA is robust with respect to target motion no faster than 10 mm/s. The impact of electronic noise on SAA also is considered.  相似文献   

17.
Medical ultrasound imaging systems are often based on transmitting, and recording the backscatter from, a series of focused broadband beams with overlapping coverage areas. When applying adaptive beamforming, a separate array covariance matrix for each image sample is usually formed. The data used to estimate any one of these covariance matrices is often limited to the recorded backscatter from a single transmitted beam, or that of some adjacent beams through additional focusing at reception. We propose to form, for each radial distance, a single covariance matrix covering all of the beams. The covariance matrix is estimated by combining the array samples after a sequenced time delay and phase shift. The time delay is identical to that performed in conventional delay-and-sum beamforming. The performance of the proposed approach in conjunction with the Capon beamformer is studied on both simulated data of scenes consisting of point targets and recorded ultrasound phantom data from a specially adapted commercial scanner. The results show that the proposed approach is more capable of resolving point targets and gives better defined cyst-like structures in speckle images compared with the conventional delay-and-sum approach. Furthermore, it shows both an increased robustness to noise and an increased ability to resolve point-like targets compared with the more traditional per-beam Capon beamformer.  相似文献   

18.
A method that uses dual-frequency pulse complexes of widely separated frequency bands to suppress noise caused by multiple scattering or multiple reflections in medical ultrasound imaging is presented. The excitation pulse complexes are transmitted to generate a second order ultrasound field (SURF) imaging synthetic transmit beam. This beam has reduced amplitude near the transducer, which illustrates the multiple scattering suppression ability of the imaging method. Field simulations solving a nonlinear wave equation are used to calculate SURF imaging beams, which are compared with beams for pulse inversion (PI) and fundamental imaging. In addition, a combined SURF and PI beam generation is described and compared with the beams mentioned above. A quality ratio, relating the energy within the near-field to that within the imaging region, is defined and used to score the multiple scattering and multiple reflection suppression abilities when imaging with the different beams. The realized combined SURF-PI beam scores highest, followed by SURF, PI (that score equally well), and the fundamental. The amplitude in the imaging region and therefore also the SNR is highest for the fundamental followed by SURF, PI, and SURF-PI. The work hence indicates that when substituting PI for SURF, one may trade increased SNR into use of increased imaging frequencies without loss of multiple scattering and multiple reflection noise suppression.  相似文献   

19.
This paper describes a method for spatial encoding in synthetic transmit aperture ultrasound imaging. This allows several ultrasonic sources to be active simultaneously. The method is based on transmitting pseudorandom sequences to spatially encode the transmitters. The data can be decoded after only one transmission using the knowledge of the transmitted code sequences as opposed to other spatial encoding techniques, such as Hadamard or Golay encoding. This makes the method less sensitive to motion, and data can be acquired using fewer transmissions. The aim of this paper is to analyze the underlying theory and to test the feasibility in a physical system. The method has been evaluated in simulations using Field II in which the point-spread functions were simulated for different depths for a 7 MHz linear array transducer. A signal-to-noise ratio (SNR) simulation also was included in the study in which an improvement in SNR of approximately 1.5 dB was attained compared to the standard synthetic transmit aperture (STA) firing scheme. Considering the amount of energy transmitted, this value is low. A plausible explanation is given that is verified in simulation. The method also was tested in an experimental ultrasound scanner and compared to a synthetic transmit aperture ultrasound imaging scheme using a sinusoidal excitation. The performance of the proposed method was comparable to the reference with respect to axial and lateral resolution, but it displayed poorer contrast with sidelobe levels at approximately - 40 dB compared to the mainlobe.  相似文献   

20.
A post-processing adjustment technique to enhance dual-frequency second-order ultrasound field (SURF) reverberation-noise suppression imaging in medical ultrasound is analyzed. Two variant methods are investigated through numerical simulations. They both solely involve post-processing of the propagated high-frequency (HF) imaging wave fields, which in real-time imaging corresponds to post-processing of the beamformed receive radio-frequency signals. Hence, the transmit pulse complexes are the same as for the previously published SURF reverberation-suppression imaging method. The adjustment technique is tested on simulated data from propagation of SURF pulse complexes consisting of a 3.5-MHz HF imaging pulse added to a 0.5-MHz low-frequency soundspeed manipulation pulse. Imaging transmit beams are constructed with and without adjustment. The post-processing involves filtering, e.g., by a time-shift, to equalize the two SURF HF pulses at a chosen depth. This depth is typically chosen to coincide with the depth where the first scattering or reflection occurs for the reverberation noise one intends to suppress. The beams realized with post-processing show energy decrease at the chosen depth, especially for shallow depths where, in a medical imaging situation, a body-wall is often located. This indicates that the post-processing may further enhance the reverberation- suppression abilities of SURF imaging. Moreover, it is shown that the methods might be utilized to reduce the accumulated near-field energy of the SURF transmit-beam relative to its imaging region energy. The adjustments presented may therefore potentially be utilized to attain a slightly better general suppression of multiple scattering and multiple reflection noise compared with non-adjusted SURF reverberation-suppression imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号