首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We report production of the functional disaccharide gentiobiose β-D-Glcp-(1→6)-D-Glc by a hydrolysis reaction of hydrothermally treated Aureobasidium pullulans β-1,3-1,6-glucan as the substrate and Kitalase as the enzyme. Gentiobiose was produced over the pH range 4−6 and the concentration of gentiobiose produced decreased above pH 7. The maximum value of gentiobiose production was unaffected by the enzyme concentration. The maximum concentration of gentiobiose produced was dependent on the substrate concentration whereas the maximum ratio of gentiobiose to glucose was not. The production of gentiobiose from yeast β-1,3-1,6-glucan was lower than that from A. pullulans β-1,3-1,6-glucan.  相似文献   

2.
According to whole-genome sequencing, Aspergillus niger produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from A. niger . AgdB has also previously been reported as being expressed in the yeast species, Pichia pastoris ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for A. niger AgdB using Aspergillus nidulans . To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0–7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.  相似文献   

3.
We previously reported that sensitivity to Congo Red (CR) or Lysing Enzymes (LE) is affected by the loss of cell-wall α-1,3-glucan (AG) in Aspergillus nidulans. We found that the amount of CR adsorbed to AG was significantly less than the amount adsorbed to β-1,3-glucan (BG) or chitin, suggesting that loss of cell-wall AG would increase exposure of BG on the cell surface, and thereby increase the sensitivity to CR. Generally, fungal BGs are known as biological response modifiers because of their recognition by Dectin-1 receptors in human immune systems. Therefore, isolation of AG-deficient mutants in Aspergillus oryzae has been used in the Japanese fermentation industry to create strains with increased ability to promote immune responses. Here, we aimed to isolate AG-deficient strains by mutagenizing A. oryzae conidia with chemical mutagens. Based on the increased sensitivity to CR in AG-deficient strains of A. nidulans and A. oryzae, we established a screening method for isolation of AG-deficient strains. Several candidate AG-deficient mutants of A. oryzae were isolated using the screening method; these strains showed increased sensitivity to CR and/or LE. Cytokine production was increased in the dendritic cells co-incubated with germinated conidia of the AG-deficient mutants. Furthermore, according to a Dectin-1 NFAT (nuclear factor of activator T cells)-GFP (green fluorescent protein) reporter assay, Dectin-1 response levels in the AG-deficient mutants were higher than those in wild-type A. oryzae. These results suggest that we successfully isolated AG-deficient mutants of A. oryzae with immunostimulatory effects.  相似文献   

4.
A combination of freeze-dried powder of disproportionating enzyme (D-enzyme)-containing potato tuber and β-amylase-containing ramie leaf was used to improve the gluten-free (GF) bread, and its physicochemical properties were characterized. The presence of D-enzyme and β amylase in the potato tuber and ramie leaf was confirmed. Sixty five percent of partially gelatinized rice flour and 20% corn starch was combined with 10% freeze-dried potato tuber and 1% ramie leaf powder, and baked. The specific volume increased by 23% compared to the control with improved internal characteristics. Texture profile analysis revealed that retrogradation of the bread was retarded when stored for 90 h at 4 °C. The bread crumb amylose content was reduced from 14 to 9% and amylopectin branch chain-length distribution was rearranged, whereby the proportions of the branch chains with Degree of polymerization (DP) < 9 and DP > 19 decreased. The results suggest that D-enzyme and β-amylase cooperatively altered amylose/amylopectin ratio and amylopectin structure.  相似文献   

5.
Carbohydrate materials that produce lower postprandial blood glucose increase are required for diabetic patients. To develop slowly digestible carbohydrates, the effect of degree of polymerization (DP) of α-1,6 glucan on its digestibility was investigated in vitro and in vivo. We prepared four fractions of α-1,6 glucan composed primarily of DP 3–9, DP 10–30, DP 31–150, and DP 151+ by fractionating a dextran hydrolysate. An in vitro experiment using digestive enzymes showed that the glucose productions of DP 3–9, DP 10–30, DP 31–150, and DP 151+ were 70.3, 53.4, 28.2, and 19.2 % in 2 h, and 92.1, 83.9, 39.6, and 33.3 % in 24 h relative to dextrin, respectively. An in vivo glycemic response showed that the incremental area under the curve (iAUC) of blood glucose levels of α-1,6 glucan with DP 3–9, DP 10–30, DP 31–150, and DP 151+ were 99.5, 84.3, 65.4, and 40.1 % relative to dextrin, respectively. These results indicated that α-1,6 glucan with higher DP had stronger resistance to digestion and produced a smaller blood glucose response. DP 10–30 showed significantly lower maximum blood glucose levels than dextrin; however, no significant difference was observed in iAUC, indicating that DP 10–30 was slowly digestible. In addition, α-1,6 glucan was also produced using an enzymatic reaction with dextrin dextranase (DDase). This produced similar results to DP 10–30. The DDase product can be synthesized from dextrin at low cost. This glucan is expected to be useful as a slowly digestible carbohydrate source.  相似文献   

6.
A GH67 α-glucuronidase gene derived from Bacillus halodurans C-125 was expressed in E. coli to obtain a recombinant enzyme (BhGlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. BhGlcA67 showed maximum activity at pH 5.4 and 45 °C. When BhGlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-O-methyl-glucuronic acid from these substrates. BhGlcA67 acted only on 4-O-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA3Xyl3), which has a glucuronic acid side chain with a 4-O-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA3Xyl4) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA3Xyl3). The environment for recognizing the 4-O-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-O-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-O-methyl group is critical for the activities of the GH67 family.  相似文献   

7.
Cellobiose phosphorylase from Cellvibrio gilvus was used to prepare 1,5-anhydro-4-O-β-D-glucopyranosyl-D-fructose [βGlc(1→4)AF] from 1,5-anhydro-D-fructose and α-D-glucose 1-phosphate. βGlc(1→4)AF decomposed into D-glucose and ascopyrone T via β-elimination. Higher pH and temperature caused faster decomposition. However, decomposition proceeded significantly even under mild conditions. For instance, the half-life of βGlc(1→4)AF was 17 h at 30 °C and pH 7.0. Because βGlc(1→4)AF is a mimic of cellulose, in which the C2 hydroxyl group is oxidized, such decomposition may occur in oxidized cellulose in nature. Here we propose a possible oxidizing pathway by which this occurs.  相似文献   

8.
The main objective of this study was to examine the phenolic compounds and the antibacterial, antioxidant, anti-α-glucosidase and anti-α-amylase activities of the different extracts (methanol, ethanol and hexane) of Musa cavendishii collected from the Anamur district in Turkey. LC–MS/MS was used to identify phenolic compounds. Quinic acid, acotinic acid, hesperidin and amentoflavone were identified in methanol extract. These phenolic compounds, excluding hesperidin, were also identified in the ethanol extract. Methanolic extract appeared the most active in all enzyme inhibition, antibacterial and antioxidative activity assays which is mainly due to its rich phenolic content. The methanol extract of banana showed the highest anti-α-glucosidase and anti-α-amylase activities with IC50 values of 5.45 ± 0.39 mg/mL, 9.70 ± 0.29 mg/mL, respectively. This study showed that methanol and ethanol extract, especially the methanol extract, have potential for use in the development of functional foods for reducing the diabetes and bacterial risks.  相似文献   

9.
We characterized an α-glucosidase belonging to the glycoside hydrolase family 31 from Aspergillus sojae. The α-glucosidase gene was cloned using the whole genome sequence of A. sojae, and the recombinant enzyme was expressed in Aspergillus nidulans. The enzyme was purified using affinity chromatography. The enzyme showed an optimum pH of 5.5 and was stable between pH 6.0 and 10.0. The optimum temperature was approximately 55 °C. The enzyme was stable up to 50 °C, but lost its activity at 70 °C. The enzyme acted on a broad range of maltooligosaccharides and isomaltooligosaccharides, soluble starch, and dextran, and released glucose from these substrates. When maltose was used as substrate, the enzyme catalyzed transglucosylation to produce oligosaccharides consisting of α-1,6-glucosidic linkages as the major products. The transglucosylation pattern with maltopentaose was also analyzed, indicating that the enzyme mainly produced oligosaccharides with molecular weights higher than that of maltopentaose and containing continuous α-1,6-glucosidic linkages. These results demonstrate that the enzyme is a novel α-glucosidase that acts on both maltooligosaccharides and isomaltooligosaccharides, and efficiently produces oligosaccharides containing continuous α-1,6-glucosidic linkages.  相似文献   

10.
Utilizing transglycosylation reaction catalyzed by β- N -acetylhexosaminidase of Stenotrophomonas maltophilia , β-D-fructofuranosyl-(2↔1)-α- N , N ´diacetylchitobioside (GlcNAc 2 -Fru) was synthesized from N -acetylsucrosamine and N , N ´-diacetylchitobiose (GlcNAc 2 ), and β-D-fructofuranosyl-(2↔1)-α- N , N ´, N ´´-triacetylchitotrioside (GlcNAc 3 -Fru) was synthesized from GlcNAc 2 -Fru and GlcNAc 2 . Through purification by charcoal column chromatography, pure GlcNAc 2 -Fru and GlcNAc 3 -Fru were obtained in molar yields of 33.0 % and 11.7 % from GlcNAc 2 , respectively. The structures of these oligosaccharides were confirmed by comparing instrumental analysis data of fragments obtained by enzymatic hydrolysis and acid hydrolysis of them with known data of these fragments.  相似文献   

11.
To study the structure of β-glucans, we developed a separation method and molecular library of β-glucan oligosaccharides. The oligosaccharides were prepared by partial acid hydrolysis from laminarin, which is a β-glucan of Laminaria digitata. They were labeled with the 2-aminopyridine fluorophore and separated to homogeneity by size-fractionation and reversed phase high-performance liquid chromatography (HPLC). Branching structures of all isomeric oligosaccharides from trimers to pentamers were determined, and a two-dimensional (2D)-HPLC map of the β-glucan oligosaccharides was made based on the data. Next, structural analysis of the longer β-glucan oligosaccharide was performed using the 2D-HPLC map. A branched decamer oligosaccharide was isolated from the β-glucan and cleaved to smaller oligosaccharides by partial acid hydrolysis. The structure of the longer oligosaccharide was successfully elucidated from the fragment structures determined by the 2D-HPLC map. The molecular library and the 2D-HPLC map described in this study will be useful for the structural analysis of β-glucans.  相似文献   

12.
α-L-Rhamnosidases (α-L-Rha-ases, EC 3.2.1.40) are glycosyl hydrolases (GHs) that hydrolyze a terminal α-linked L-rhamnose residue from a wide spectrum of substrates such as heteropolysaccharides, glycosylated proteins, and natural flavonoids. As a result, they are considered catalysts of interest for various biotechnological applications. α-L-rhamnose (6-deoxy-L-mannose) is structurally similar to the rare sugar α-L-mannose. Here we have examined whether microbial α-L-Rha-ases possess α-L-mannosidase activity by synthesizing the substrate 4-nitrophenyl α-L-mannopyranoside. Four α-L-Rha-ases from GH78 and GH106 families were expressed and purified from Escherichia coli cells. All four enzymes exhibited both α-L-rhamnosyl-hydrolyzing activity and weak α-L-mannosyl-hydrolyzing activity. SpRhaM, a GH106 family α-L-Rha-ase from Sphingomonas paucimobilis FP2001, was found to have relatively higher α-L-mannosidase activity as compared with three GH78 α-L-Rha-ases. The α-L-mannosidase activity of SpRhaM showed pH dependence, with highest activity observed at pH 7.0. In summary, we have shown that α-L-Rha-ases also have α-L-mannosidase activity. Our findings will be useful in the identification and structural determination of α-L-mannose-containing polysaccharides from natural sources for use in the pharmaceutical and food industries.  相似文献   

13.
14.
We recently characterized a 3-O-α-D-galactosyl-α-L-arabinofuranosidase (GAfase) for the release of α-D-Gal-(1→3)-L-Ara from gum arabic arabinogalactan protein (AGP) in Bifidobacterium longum subsp. longum JCM7052. In the present study, we cloned and characterized a neighboring α-galactosidase gene (BLGA_00330; blAga3). It contained an Open Reading Frame of 2151-bp nucleotides encoding 716 amino acids with an estimated molecular mass of 79,587 Da. Recombinant BlAga3 released galactose from α-D-Gal-(1→3)-L-Ara, but not from intact gum arabic AGP, and a little from the related oligosaccharides. The enzyme also showed the activity toward blood group B liner trisaccharide. The specific activity for α-D-Gal-(1→3)-L-Ara was 4.27- and 2.10-fold higher than those for melibiose and raffinose, respectively. The optimal pH and temperature were 6.0 and 50 °C, respectively. BlAga3 is an intracellular α-galactosidase that cleaves α-D-Gal-(1→3)-L-Ara produced by GAfase; it is also responsible for a series of gum arabic AGP degradation in B. longum JCM7052.  相似文献   

15.
Bifidobacterium longum subsp. infantis ATCC 15697 possesses five α-L-fucosidases, which have been previously characterized toward fucosylated human milk oligosaccharides containing α1,2/3/4-linked fucose [Sela et al.: Appl. Environ. Microbiol., 78, 795-803 (2012)]. In this study, two glycoside hydrolase family 29 α-L-fucosidases out of five (Blon_0426 and Blon_0248) were found to be 1,6-α-L-fucosidases acting on core α1,6-fucose on the N-glycan of glycoproteins. These enzymes readily hydrolyzed p-nitrophenyl-α-L-fucoside and Fucα1-6GlcNAc, but hardly hydrolyzed Fucα1-6(GlcNAcβ1-4)GlcNAc, suggesting that they de-fucosylate Fucα1-6GlcNAcβ1-Asn-peptides/proteins generated by the action of endo-β- N-acetylglucosaminidase. We demonstrated that Blon_0426 can de-fucosylate Fucα1-6GlcNAc-IgG prepared from Rituximab using Endo-CoM from Cordyceps militaris. To generate homogenous non-fucosylated N-glycan-containing IgG with high antibody-dependent cellular cytotoxicity (ADCC) activity, the resulting GlcNAc-IgG has a potential to be a good acceptor substrate for the glycosynthase mutant of Endo-M from Mucor hiemalis. Collectively, our results strongly suggest that Blon_0426 and Blon_0248 are useful for glycoprotein glycan remodeling.  相似文献   

16.
Glycopolymers have attracted increased attention as functional polymeric materials, and simple methods for synthesizing glycopolymers remain needed. This paper reports the aqueous one-pot and chemoenzymatic synthesis of four types of glycopolymers via two reactions: the β-galactosidase-catalyzed glycomonomer synthesis using 4,6-dimetoxy triazinyl β-D-galactopyranoside and hydroxy group-containing (meth)acrylamide and (meth)acrylate derivatives as the activated glycosyl donor substrate and as the glycomonomer precursors, respectively, followed by radical copolymerization of the resulting glycomonomer and excess glycomonomer precursor without isolating the glycomonomers. The resulting glycopolymers bearing galactose moieties exhibited specific and strong interactions with the lectin peanut agglutinin as glycoclusters.  相似文献   

17.
β-L-Arabinopyranosidases are classified into the glycoside hydrolase family 27 (GH27) and GH97, but not into GH36. In this study, we first characterized the GH36 β-L-arabinopyranosidase BAD_1528 from Bifidobacterium adolescentis JCM1275. The recombinant BAD_1528 expressed in Escherichia coli had a hydrolytic activity toward p-nitrophenyl (pNP)-β-L-arabinopyranoside (Arap) and a weak activity toward pNP-α-D-galactopyranoside (Gal). The enzyme liberated L-arabinose efficiently not from any oligosaccharides or polysaccharides containing Arap-β1,3-linkages, but from the disaccharide Arap-β1,3-L-arabinose. However, we were unable to confirm the in vitro fermentability of Arap-β1,3-Ara in B. adolescentis strains. The enzyme also had a transglycosylation activity toward 1-alkanols and saccharides as acceptors.  相似文献   

18.
α-1,6-Glucosidase (isomaltase) belongs to glycoside hydrolase (GH) families 13 and 31. Genes encoding 3 isomaltases belonging to GH family 13 were cloned from filamentous fungi, Aspergillus oryzae (agl1), A. niger (agdC),and Fusarium oxysporum (foagl1), and expressed in Escherichia coli. The enzymes hydrolyzed isomaltose and α-glucosides preferentially at a neutral pH, but did not recognize maltose, trehalose, and dextran. The activity of AgdC and Agl1 was inhibited in the presence of 1 % glucose, while Foagl1 was more tolerant to glucose than the other two enzymes were. The three fungal isomaltases did not show transglycosylation when isomaltose was used as the substrate and a similar result was observed for AgdC and Agl1 when p-nitrophenyl-α-glucoside was used as the substrate.  相似文献   

19.
A novel substrate {Galβ1,4GlcNAcβ1,4GlcNAc-β-pNP [Gal(GlcNAc)2-β-pNP]} for assaying lysozyme activity has been designed using docking simulations and enzymatic synthesis via β-1,4-galactosyltransferase-mediated transglycosylation from UDP-Gal as the donor to (GlcNAc)2-β-pNP as the acceptor. Hydrolysis of the synthesized Gal(GlcNAc)2-β-pNP and related compounds using hen egg-white lysozyme (HEWL) demonstrated that the substrate was specifically cleaved to Gal(GlcNAc)2 and p-nitrophenol (pNP). A combination of kinetic studies and docking simulation was further conducted to elucidate the mode of substrate binding. The results demonstrate that Gal(GlcNAc)2-β-pNP selectively binds to a subsite of lysozyme to liberate the Gal(GlcNAc)2 and pNP products. The work therefore describes a new colorimetric method for quantifying lysozyme on the basis of the determination of pNP liberated from the substrate.  相似文献   

20.
Abstract: In this study, a β-glucosidase (PaBG1b) with high specific activity was purified from gut extracts of the wood-feeding cockroach Panesthia angustipennis spadica using Superdex 75 gel filtration chromatography and High-Trap phenyl hydrophobic chromatography. The protein was purified 14-fold to a single band identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, with an apparent molecular mass of 56.7 kDa. The specific activity of the purified enzyme was 708 μmol/min/mg protein using cellobiose as substrate. To the best of our knowledge, this is the highest specific activity reported among β-glucosidases to date. The purified PaBG1b showed optimal activity at pH 5.0 and retained more than 65 % of the activity between pH 4.0 and 6.5. The activity was stable up to 50 °C for 30 min. Kinetic studies on cellobiose revealed that the Km was 5.3 mM, and the Vmax was 1,020 μmol/min/mg. The internal amino acid sequence of PaBG1b was analyzed, and two continuous sequences (a total of 39 amino acids) of the C-terminal region were elucidated. Based on these amino acid sequences, a full-length cDNA (1,552 bp) encoding 502 amino acids was isolated. The encoded protein showed high similarity to β-glucosidases from glycoside hydrolase family 1. Thus, the current study demonstrated the potential of PaBG1b for application in enzymatic biomass-conversion as a donor gene for heterologous recombination of cellulase-producing agents (fungi or bacteria) or an additive enzyme for cellulase products based on the high-performance of PaBG1b as a digestive enzyme in cockroaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号