首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
The potential use of carbon fibre laminate composites is limited by the weak out-of-plane properties, especially delamination resistance. The effect of incorporating titanium carbide to the mesophase pitch matrix precursor of carbon fibre laminate composites on interlaminar shear strength is studied both on carbonised and graphitised composites. The presence of titanium carbide modifies the optical texture of the matrix from domains to mosaics in those parts with higher concentrations and it contributes to an increase of fibre/matrix bonding. This fact produces an increase of the interlaminar shear strength of the material and changes the fracture mode.  相似文献   

2.
For the first time, electrospun carbon nanofibers (ECNFs, with diameters and lengths of ∼200 nm and ∼15 μm, respectively) were explored for the preparation of nano-epoxy resins; and the prepared resins were further investigated for the fabrication of hybrid multi-scale composites with woven fabrics of conventional carbon fibers via the technique of vacuum assisted resin transfer molding (VARTM). For comparison, vapor growth carbon nanofibers (VGCNFs) and graphite carbon nanofibers (GCNFs) were also studied for making nano-epoxy resins and hybrid multi-scale composites. Unlike VGCNFs and GCNFs that are prepared by bottom-up methods, ECNFs are produced through a top-down approach; hence, ECNFs are more cost-effective than VGCNFs and GCNFs. The results indicated that the incorporation of a small mass fraction (e.g., 0.1% and 0.3%) of ECNFs into epoxy resin would result in substantial improvements on impact absorption energy, inter-laminar shear strength, and flexural properties for both nano-epoxy resins and hybrid multi-scale composites. In general, the reinforcement effect of ECNFs was similar to that of VGCNFs, while it was higher than that of GCNFs.  相似文献   

3.
A novel method was developed to realize the situ accumulation of carbon nanofibers (CNFs) in the carbon fiber reinforced polymer composites (CFRPs) to construct the multi-scale reinforcement for improving the interlaminar properties. In this method, the prepreg was sealed by the nanomicroporous nylon membrane, and the excess resin was extracted from the prepreg by the vacuum-assisted method. It was found that the use of nylon membrane resulted in effective CNFs accumulation, especially in the interlayer by scanning electron microscopy. Short-beam strength tests and the end-notched flexure tests were conducted respectively to evaluate the interlaminar properties of CFRPs under shear loading. The results indicated that the interlaminar shear strength (ILSS) and the Mode II interlaminar fracture toughness (GIIC) of CFRPs made by the filtering membrane-assisted method remarkably increased compared with those prepared without using filtering membrane.  相似文献   

4.
Halloysite nanotubes (HNTs), which are geometrically similar to multi-walled carbon nanotubes, can improve the impact strength of epoxy substantially, according to our previous work [1]. Using a HNT-toughened epoxy as the matrix, a set of hybrid composites was prepared with carbon fiber-woven fabrics. The interlaminar properties of the composites were investigated by a short-beam shear test, a double-cantilever-beam test and an end-notched flexure test. The results showed that the addition of HNTs to the composites improved the interlaminar shear strength and the fracture resistance under Mode I and Mode II loadings greatly. The morphological study of the hybrid composites revealed that HNTs were non-uniformly dispersed in the epoxy matrix, forming a unique microstructure with a large number of HNT-rich composite particles enveloped by a continuous epoxy-rich phase. A study of the fracture mechanism uncovered the important role of this special morphology during the fracturing of the hybrid composites.  相似文献   

5.
This study presents results from a study of the mechanical behaviour of flax reinforced Poly(l-Lactic Acid) (PLLA) under in-plane shear and mode I interlaminar fracture testing. Slow cooling of the unreinforced polymer has been shown to develop crystalline structure, causing improvement in matrix strength and modulus but a drop in toughness. The in-plane shear properties of the composite also drop for the slowest cooling rate, the best combination of in-plane shear performance and delamination resistance is noted for an intermediate cooling rate, (15.5 °C/min). The values of GIc obtained at this cooling rate are higher than those for equivalent glass/polyester composites. These macro-scale results have been correlated with microdroplet interface debonding and matrix characterization measurements from a previous study. The composite performance is dominated by the matrix rather than the interface.  相似文献   

6.
In order to optimize carbon nanotube (CNT) dispersion state in fiber/epoxy composite, a novel kind of CNT organization form of continuous networks was designed. The present work mainly discussed the feasibility of preparing continuous CNT networks in composite: Fiber fabric was immersed into CNT aqueous solution (containing dispersant) followed by freeze drying and pyrolysis process, prior to epoxy infusion. The morphologies of fabric with CNTs were observed by Scanning Electron Microscope. The relationship between CNT networks and flowing epoxy resin was studied. Properties of composite, including out-of-plane electrical conductivity and interlaminar shear strength (ILSS), were measured. The results demonstrated that continuous and porous CNT networks formed by entangled CNTs could be assembled in fiber fabric. Most part of them were preserved in composite due to the robustness of network structures. The preserved CNT networks significantly improved out-of-plane electrical conductivity, and also have an effect on ILSS value.  相似文献   

7.
Aligned carbon nanotubes (CNTs) are implemented into alumina-fiber reinforced laminates, and enhanced mass-specific thermal and electrical conductivities are observed. Electrical conductivity enhancement is useful for electrostatic discharge and sensing applications, and is used here for both electromagnetic interference (EMI) shielding and deicing. CNTs were grown directly on individual fibers in woven cloth plies, and maintained their alignment during the polymer (epoxy) infiltration used to create laminates. Using multiple complementary methods, non-isotropic electrical and thermal conductivities of these hybrid composites were thoroughly characterized as a function of CNT volume/mass fraction. DC and AC electrical conductivity measurements demonstrate high electrical conductivity of >100 S/m (at 3% volume fraction, ∼1.5% weight fraction, of CNTs) that can be used for multifunctional applications such as de-icing and electromagnetic shielding. The thermal conductivity enhancement (∼1 W/m K) suggests that carbon-fiber based laminates can significantly benefit from aligned CNTs. Application of such new nano-engineered, multi-scale, multi-functional CNT composites can be extended to system health monitoring with electrical or thermal resistance change induced by damage, fire-resistant structures among other multifunctional attributes.  相似文献   

8.
In this work, carbon composite bipolar plates consisting of synthetic graphite and milled carbon fibers as a conductive filler and epoxy as a polymer matrix developed using compression molding is described. The highest electrical conductivity obtained from the described material is 69.8 S/cm for the in-plane conductivity and 50.34 S/cm for the through-plane conductivity for the composite containing 2 wt.% carbon fiber (CF) with 80 wt.% filler loading. This value is 30% greater than the electrical conductivity of a typical graphite/epoxy composite with 80 wt.% filler loading, which is 53 S/cm for the in-plane conductivity and 40 S/cm for the through-plane conductivity. The flexural strength is increased to 36.28 MPa compared to a single filler system, which is approximately 25.22 MPa. This study also found that the General Effective Media (GEM) model was able to predict the in-plane and through-plane electrical conductivities for single filler and multiple filler composites.  相似文献   

9.
Hybrid nano/microcomposites with a nanoparticle reinforced matrix were developed, manufactured, and tested showing significant enhancements in damage tolerance properties. A woven carbon fiber reinforced polymer composite, with the polymer (epoxy) matrix reinforced with well dispersed carbon nanotubes, was produced using dispersant-and-sonication based methods and a wet lay-up process. Various interlaminar damage tolerance properties of this composite, including static strength, fracture toughness, fatigue life, and crack growth rates were examined experimentally and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (20%), fracture toughness (180%), shear fatigue life (order of magnitude), and fatigue crack growth rate (factor of 2). Observations by scanning electron microscopy of failed specimens showed significant differences in fracture surface morphology between the two materials, related to the differences in properties and providing context for understanding of the enhancement mechanisms.  相似文献   

10.
In this study, we investigate how multi-wall carbon nanotubes (MWCNTs) affect the in-plane shear mechanical behavior of glass fiber/epoxy composite. These multi-scale composites are fabricated using vacuum infusion: pristine MWCNT and amino-functionalized MWCNT are incorporated into epoxy resins at concentrations of both 0.1 and 0.3 wt.% and are subsequently evaluated. The MWCNT are mixed into the resins by mechanical stirring and sonication prior to resin infusion, and the MWCNT distribution in the cured laminate is then evaluated by performing a heat conduction assessment. Monotonic and cyclic quasi-static room temperature in-plane shear tests are performed following the ASTM D 4255 standard. The initial shear modulus, the deterioration of the shear modulus during plastic deformation and material hardening are evaluated. Incorporating MWCNT into the resins did not affect the parameters investigated under the imposed conditions.  相似文献   

11.
MWNTs-EP/PSF (polysulfone) hybrid nanofibers with preferred orientation were directly electrospun onto carbon fiber/epoxy prepregs and interlaminar synchronously reinforced and toughened CFRP composites were successfully fabricated. With MWNTs-EP loading increasing, the oriented nanofibers were obtained accompanying with enhanced alignment of inner MWNTs-EP. Flexural properties and interlaminar shear strength of composites were improved with increasing MWNTs-EP loadings, whereas fracture toughness attained maximum at 10 wt% MWNTs-EP loading and then decreased. Based on these results, multiscale schematic modeling and mechanism schematic of hybrid nanofibers reinforced and toughened composites were suggested. Due to the preferred orientation of nanofibers, MWNTs-EP was inclined to align vertically to carbon fiber direction along the in-plane of interface layer. The proposed network structures, containing four correlative phases of MWNTs-EP/PSF sphere/carbon fiber/epoxy matrix, contributed to simultaneous improvement of strength and toughness of composites, which was realized by crack pinning, crack deflection, crack bridging and effective load transfer.  相似文献   

12.
In this study, carbon fibers (CFs) were coated with graphene nanoplatelets (GnP), using a robust and continuous coating process. CFs were directly immersed in a stable GnP suspension and the coating conditions were optimized in order to obtain a high density of homogeneously and well-dispersed GnP. GnP coated CFs/epoxy composites were manufactured by a prepreg and lay-up method, and the mechanical properties and electrical conductivity of the composites were assessed. The GnP coated CFs/epoxy composites showed 52%, 7%, and 19% of increase in comparison with non-coated CFs/epoxy composites, for 90° flexural strength, 0° flexural strength and interlaminar shear strength, respectively. Meanwhile, incorporating GnP in the CF/epoxy interphase significantly improved the electrical conductivity through the thickness direction by creating a conductive path between the fibers.  相似文献   

13.
Utilizing synergetic effect of different ingredients is an important strategy to design new multi-functional composites. In this work, high-strength graphene oxide and conductive polyaniline were selected to dope into divinylbenzene to fabricate a new type carbon fiber reinforced polymer laminates, where a cooperative improvement of through-thickness electrical conductivity and interlaminar shear strength was observed. With addition of 15 wt% of PANI-GO at the optimized weight ratio of 60:1 in the CF/DVB-PANI-GO, 150% enhancement of the electrical conductivity compared to the CF/DVB-PANI, and 76% enhancement of the ILSS compared to the CF/DVB-GO were realized. Our laminates reach 66% in ILSS of that for the conventional CFRP made of epoxy, but the former features about 103 times higher AC conductivity. The mechanism for such a synergic enhancement for both electrical and mechanical performance was investigated by rheology measurement and scanning electron microscopy, where uniform 3-D network formed by PANI/GO has been clearly observed.  相似文献   

14.
The high-performance carbon fiber reinforced poly(phenylene sulfide) composites were continuously fabricated using thermoplastic prepregs in a double-belt press. The effects of process velocity on the composite consolidation quality and mechanical properties were investigated. It is found that the tensile and interlaminar shear properties of composites prepared using the double-belt press are comparable to that of compression-molded composites when the process velocity is no more than 0.20 m·min−1. The composite fracture morphologies also show different failure mechanisms between different samples and indicate that the interfacial adhesion strength may play a vital role in the mechanical properties of CF/PPS composites. Furthermore, experimental results show that the heating time above 330 °C should be over 440 s and the void content should be lower than 2.38% in order to obtain high performance CF/PPS composites.  相似文献   

15.
The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix’s structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.  相似文献   

16.
The insertion of local through-thickness reinforcements into dry fiber preforms by stitching provides a possibility to improve the mechanical performance of polymer-matrix composites perpendicular to the laminate plane (out-of-plane). Three-dimensional stress states can be sustained by stitching yarns, leading to increased out-of-plane properties, such as impact resistance and damage tolerance. On the other hand, 3D reinforcements induce dislocations of the in-plane fibers causing fiber waviness and the formation of resin pockets in the stitch vicinity after resin infusion which may reduce the in-plane stiffness and strength properties of the laminate.In the present paper an experimental study on the influence of varying stitching parameters on in-plane and out-of-plane properties of non-crimp fabric (NCF) carbon fiber/epoxy laminates is presented, namely, shear modulus and strength as well as compression after impact (CAI) strength and mode I energy release rate. The direction of stitching, thread diameter, spacing and pitch length as well as the direction of loading (which is to be interpreted as the direction of the three rail shear loading or the direction of crack propagation in case of mode 1 energy release rate testing) were varied, and their effect on the mechanical properties was evaluated statistically.The stitching parameters were found to have ambivalent effect on the mechanical properties. Larger thread diameters and increased stitch densities result in enhanced CAI strengths and energy release rates but deteriorate the in-plane properties of the laminate. On the other hand, a good compromise between both effects can be found with a proper selection of the stitching configurations.  相似文献   

17.
We demonstrate a water-based method to fabricate strong, electrically and thermally conductive hybrid thin films (papers) made from the combination of graphene nanoplatelets (GnP) and cellulose nanocrystals (CNC). Unpressed and hot-pressed GnP papers containing CNC ranging from 0 wt% to 25 wt% were prepared. It is found that the GnP is well aligned within the hybrid paper, and a higher degree of alignment is induced by the hot-pressing process. The mechanical properties of the resulting papers increased with increasing content of CNC. The hot-pressed 25 wt% CNC hybrid paper showed the best mechanical properties among all the papers studied and improved the tensile strength by 33% and the modulus by 57% compared to neat GnP paper. Both the highest in-plane and though-plane thermal conductivity of 41 W/m K and 1.2 W/m K were measured respectively for the hot-pressed 15 wt% CNC hybrid paper. The electrical conductivity decreased continuously with increasing content of CNC but the thin film was still conductive at the highest CNC content in this study. The low-cost, environmental-friendly, thermally and electrically conductive flexible GnP/CNC hybrid papers have a set of properties making them suitable for many potential applications.  相似文献   

18.
For practical application of carbon nanotube (CNT)/polymer composites, it is critical to produce the composites at high speed and large scale. In this study, multi-walled carbon nanotubes (MWNTs) with large diameter (∼45 nm) and polyvinyl alcohol (PVA) were used to increase the processing speed of a recently developed spraying winding technique. The effect of the different winding speed and sprayed solution concentration to the performance of the composite films were investigated. The CNT/PVA composites exhibit tensile strength of up to 1 GPa, and modulus of up to 70 GPa, with a CNT weight fraction of 53%. In addition, an electrical conductivity of 747 S/cm was obtained for the CNT/PVA composites. The good mechanical and electrical properties are attributed to the uniform CNTs and PVA matrix integration and the high degree of tube alignment.  相似文献   

19.
An experimental study was conducted to improve the electrical conductivity of continuous carbon fibre/epoxy (CF/EP) composite laminate, with simultaneous improvement in mechanical performance, by incorporating nano-scale carbon black (CB) particles and copper chloride (CC) electrolyte into the epoxy matrix. CF/EP laminates of 65 vol.% of carbon fibres were manufactured using a vacuum-assisted resin infusion (VARI) technique. The effects of CB and the synergy of CB/CC on electrical resistivity, tensile strength and elastic modulus and fracture toughness (KIC) of the epoxy matrix were experimentally characterised, as well as the transverse tensile modulus and strength, Mode I and Mode II interlaminar fracture toughness of the CF/EP laminates. The results showed that the addition of up to 3.0 wt.% CB in the epoxy matrix, with the assistance of CC, noticeably improved the electrical conductivity of the epoxy and the CF/EP laminates, with mechanical performance also enhanced to a certain extent.  相似文献   

20.
An effective carbon fiber/graphene oxide/carbon nanotubes (CF-GO-CNTs) multiscale reinforcement was prepared by co-grafting carbon nanotubes (CNTs) and graphene oxide (GO) onto the carbon fiber surface. The effects of surface modification on the properties of carbon fiber (CF) and the resulting composites was investigated systematically. The GO and CNTs were chemically grafted on the carbon fiber surface as a uniform coating, which could significantly increase the polar functional groups and surface energy of carbon fiber. In addition, the GO and CNTs co-grafted on the carbon fiber surface could improve interlaminar shear strength of the resulting composites by 48.12% and the interfacial shear strength of the resulting composites by 83.39%. The presence of GO and CNTs could significantly enhance both the area and wettability of fiber surface, leading to great increase in the mechanical properties of GO/CNTs/carbon fiber reinforced composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号