首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang Q  Wodtke AM 《Analytical chemistry》2005,77(23):7612-7617
Cocrystallization between analyte and matrix is required by matrix-assisted laser desorption/ionization and can represent a significant limitation of the technique. A molecular beam expansion, mass spectrometric method has been developed to explore the possibility of using pure solvents as matrix to avoid cocrystallization. Two kinds of solvent, liquid CS2 and liquid or supercritical CO2, have been studied with 266-nm UV laser irradiation. We successfully ionized a number of compounds, including caffeine, guanine, cholesterol, and mixed fullerenes. Under some conditions, the mass spectra reflect parent radical cations formed by photoionization. Under other conditions, protonated, sodiated (and with CS2 even sulfated) ions are seen reflecting a nonunimolecular ionization process. When UV-transparent CO2 is used as a solvent, only analyte molecules with a UV chromophore are detected. However, with UV-absorbing CS2, we demonstrate ionization of molecules lacking a UV chromophore. This work provides strong evidence that one can form solvent clusters containing analyte, that laser photoionization of the solvent precedes ionization of the analyte, and that solvent evaporation along with the indirect ionization leads to reduced parent ion fragmentation. The exploration of this now demonstrated concept with other solvents would appear fruitful for future work.  相似文献   

2.
Ha TK  Lee TG  Song NW  Moon DW  Han SY 《Analytical chemistry》2008,80(22):8526-8531
We propose a new scheme of matrix-free laser desorption/ionization with cation assistance for surface mass spectrometry of self-assembled monolayers (SAMs) of alkanethiolates on gold substrates and gold nanoparticles (NPs). In a proof-of-concept experiment, a simple treatment using an aqueous salt solution such as NaI(aq) was shown to lead to a significant laser desorption/ionization, producing the characteristic (disulfide) ions of alkanethiolate molecules from the monolayers. Further efforts to understand the mechanism were also given, including laser power and salt concentration dependence studies. In the power dependence study, the characteristic ions were found to be produced at low laser power where no gold substrate species was seen. At high laser power, the generation of gold species, Au(+)-Au5(+), resulted in a saturation behavior in the characteristic mass peak for alkanethiolate molecules. In addition, characteristic ions with gold adducts were not observed at any laser power. With increasing salt concentration, the characteristic mass peak was gradually increased. The results suggest that the adduct formation of a cation with alkanethiolates in the monolayers provide a facile pathway to supply a charge to UV laser-desorbed secondary neutrals for mass spectrometric detection. This cation-assisted laser desorption/ionization (CALDI) mass spectrometry was further examined with the SAMs and mixed SAMs with various terminals such as -OH, -OCH3, -NH2, -ethylene (-CH=CH2), and -acetylene (-C[triple bond]CH). The CALDI method was also successfully applied to surface mass spectrometry of monolayer-protected gold NPs (approximately 16 nm diameter) with OH- and COOH-terminated SAMs. The unique advantages of the matrix-free CALDI method may extend our capability in investigations of interfacial chemistry at SAMs as well as mass spectrometric applications using biochips and nanoparticles.  相似文献   

3.
We show that it is possible to obtain fragment-free mass spectra of large molecules by a combination of laser desorption, jet cooling, and VUV single-photon photoionization. The ability to obtain parent molecular masses is particularly important for the analysis of mixtures, such as combinations of fully saturated hydrocarbons. By varying the cooling conditions, we can also achieve partial fragmentation in order to obtain further structural information. The use of different wavelengths provides additional selectivity between aromatic and aliphatic compounds.  相似文献   

4.
Methyl- and carboxy-terminated self-assembled monolayers (SAMs) were custom-patterned on porous gold substrates with equipment commonly used to print protein arrays, without complex surface chemistry protocols. Proteins were covalently immobilized on hydrophilic carboxy-terminated SAM spots, while the remainder of the surface was superhydrophobic due to the roughened gold surface and the methyl-terminated SAM. The resistance of these patterns to biofouling and the effective containment of MALDI matrix solution within the hydrophilic spot made these surfaces amenable to analyzing protein-peptide binding with mass spectrometry. A model system of the affinity peptides HA, cmyc, and V5 and their corresponding antibodies was used to demonstrate the utility of the patterned porous gold. Mass spectrometry (MS) and tandem mass spectrometry (MS/MS) matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) spectra and images obtained reflected the effective capture of the affinity peptides directly from spiked bovine plasma.  相似文献   

5.
A new method, photoionization aerosol mass spectrometry (PIAMS), is described for real-time analysis of organic components in airborne particles below approximately 300 nm in diameter. Particles are focused through an aerodynamic lens assembly into the mass spectrometer where they are collected on a probe in the source region. After a sufficient amount of sample has been collected, the probe is irradiated with a pulsed infrared laser beam to vaporize organic components, which are then softly ionized with coherent vacuum ultraviolet radiation at 118 nm (10.5 eV). Since the photon energy is close to the ionization energies of most organic compounds, fragmentation is minimized. Both aliphatic and aromatic compounds of atmospheric relevance are detected and quantified in the low- to midpicogram range. The photoionization signal intensity increases linearly with the amount of material sampled and is independent of particle size. The fragmentation induced by laser desorption is greater than that observed with thermal vaporization, suggesting that the internal energy imparted by the former is greater. Although some molecular fragmentation is observed, mass spectra from common sources of ambient organic aerosol are distinguishable and consistent with previous off-line measurements by gas chromatography/mass spectrometry. These results illustrate the potential of PIAMS for molecular characterization of organic aerosols in ambient and smog chamber measurements.  相似文献   

6.
Liu R  Liu JF  Zhou XX  Jiang GB 《Analytical chemistry》2011,83(10):3668-3674
Au nanoporous films (NPFs) with different surface modification and morphology were fabricated and utilized as substrates for the analysis of a series of compounds, including amino acids, drug, cyclodextrins, peptides, and polyethylene glycols, using surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). It was found that the size and interconnection state of the NPF ligament as well as the surface modification are key parameters that affect the laser desorption/ionization performance. Compared with 2,5-dihydroxybenzoic acid, pristine NPF, and aminobenzenethiol or 3-mercaptopropanoic acid modified Au NPFs, cysteine modified Au NPF generated intense and background-suppressing mass spectra. Regarding the effect of Au NPF morphology, the Au NPF with nanopores in the range of 10-30 nm, ligament size of 5 nm, and electrochemistry surface area of 26.1 m(2)/g exhibited the highest performance as a substrate. This high-performance NPFs can be easily fabricated by capping agent replacement induced self-organization of ultrathin nanowires, followed by self-assembling of a monolayer (SAM) of cysteine. The good thermal/electroconductivity and uniformity of Au NPFs avoided the fragmentation of analytes, eliminated the intrinsic matrix ions interference, and provided good reproducibility (RSD ≤ 10%). Additionally, the fabricated NPFs can be easy divided into microarrays (a ~4 × 4 array from a 1 cm × 1 cm NPF). This work provides a simple and cost-effective route for acquiring an Au nanostructure as a SALDI substrate, which offers a new technique for high-speed analysis of low-molecular weight compounds.  相似文献   

7.
Electron impact ionization has several known advantages; however, heated filament electron sources have pressure limitations and their power consumption can be significant for certain applications, such as in field-portable instruments. Herein, we evaluate a VUV krypton lamp as an alternative source for ionization inside the ion trap of a mass spectrometer. The observed fragmentation patterns are more characteristic of electron impact ionization than photoionization. In addition, mass spectra of analytes with ionization potentials higher than the lamp's photon energy (10.6 eV) can be easily obtained. A photoelectron impact ionization mechanism is suggested by the observed data allowed by the work function of the ion trap electrodes (4.5 eV), which is well within the lamp's photon energy. In this case, the photoelectrons emitted at the surface of the ion trap end-cap electrode are accelerated by the applied rf field to the ring electrode. This allows the photoelectrons to gain sufficient energy to ionize compounds with high ionization potentials to yield mass spectra characteristic of electron impact. In this manner, electron impact ionization can be used in ion trap mass spectrometers at low powers and without the limitations imposed by elevated pressures on heated filaments.  相似文献   

8.
Experiments demonstrate that peptides with ionization potentials (IPs) above 7.87 eV can be single-photon-ionized in the gas phase with a molecular fluorine laser following prior chemical derivatization with one of several aromatic tags acting as chromophores. 4-(Dimethylamino)benzoic acid, 1-naphthylacetic acid, and 9-anthracenecarboxylic acid (denoted Benz, Naph and Anth, respectively) behave as chromophores, allowing single-photon ionization for vacuum ultraviolet (VUV) laser light by lowering the IP of the tagged peptide. Anth-tagged peptides that are laser-desorbed from a substrate and subsequently postionized produce mass spectra dominated by the intact radical cation, although protonated ions and fragmented species are also observed. Electronic structure calculations on Anth-tagged peptides indicate that in addition to lowering the ionization potential, the presence of the aromatic tag increases charge localization on and delocalization across the ring structure, which presumably stabilizes the radical cation. Measurements on several tagged peptides confirm this calculation and show that the stabilizing effect of the tag increases with the size of the conjugated system in the order Benz < Naph < Anth. The tagged hexapeptide Anth-GAPKSC exhibits the parent ion, whereas the Benz- and Naph-tagged peptides do not. These results are supported by the experimental comparison of Anth-tagged vs untagged tryptophan, further suggesting that VUV postionization of tagged high-IP species is a promising method for expanding the capabilities of mass spectrometric analyses of molecular species.  相似文献   

9.
The laser desorption/laser ionization time-of-flight (L2ToF), mass spectra of anthracene and the anthracene-picric acid charge transfer (C-T) complex have been compared at a desorption and ionization wavelength of 266 nm. Laser desorption/ionization spectra of anthracene were obtained at low temperatures (-30 °C) to minimize the interference from gas phase ionization. Positive ion mass spectra of the picrate C-T complex at room temperature comprise the parent ion of anthracene and were devoid of signals associated with the picric acid component. The L2ToF analyses of a mixture of volatile and involatile EPA priority PAHs in picric acid show that low molecular weight PAHs form involatile charge transfer complexes. The present method reduces the possibility of volatile PAH loss during mass spectrometric analyses in vacuo.  相似文献   

10.
The small molecular analyte 3,5-dibromotyrosine (Br(2)Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br(2)Y were analyzed by laser desorption postionization-mass spectrometry (LDPI-MS). LDPI-MS using a 7.87 eV laser and tunable 8-12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br(2)Y films allowed detection by ≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br(2)Y to be ~8.3 ± 0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at ≤8 eV photon energies. However, single photon ionization could only detect Br(2)Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi(3)(+) secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. However, the negative ion SIMS appeared strongly dependent on the high electron affinity of this specific analyte and the analyte's condensed phase environment.  相似文献   

11.
Single aerosol particles of ethylene glycol and oleic acid are vaporized on a heater at temperatures between 500 and 700 K, and the resulting vapor plume is ionized by a 10.5-eV vacuum ultraviolet (VUV) laser. The mass spectra are compared to those obtained by CO2 laser vaporization followed by VUV laser ionization. The relative intensities of the parent and fragment ion peaks are remarkably similar for the two modes of vaporization. A Maxwell-Boltzmann distribution of speeds accurately describes the dependence of the signal as a function of the VUV laser pulse timing. The signal levels obtained with this design are sufficient to obtain good-quality mass spectra.  相似文献   

12.
The distribution of polyaromatic hydrocarbons (PAHs) in ambient aerosol particles is of importance to both human health and climate forcing. Although time-of-flight secondary ion mass spectrometry (ToF-SIMS) has proven useful for studying the distribution of organic compounds in individual aerosol particles, it is difficult to detect PAHs at relevant concentrations in individual aerosol particles because of their low ion yield. In this study, we explore the potential of using laser secondary neutral mass spectrometry (Laser-SNMS) to study three PAHs: pyrene, anthracene, and naphthalene. Because of the high volatility of PAHs, a cryostage was required for the analysis to prevent sublimation of the molecules into the vacuum chamber. We studied two laser systems, a 157 nm excimer laser, which is capable of single-photon ionization of the PAHs, and a 193 nm laser, which requires multiphoton ionization. Under optimized conditions for laser power density and primary ion pulse length, 193 nm postionization resulted in a 2-50-fold increase in ion yield over ToF-SIMS. Using the 157 nm laser, the yield was increased by more than 3 orders of magnitude for all 3 PAHs studied. The single-photon postionization process proved superior in terms of both yield enhancement and reduced fragmentation. By using the optimized 157 nm laser system and a cryostage, we were able to detect PAHs on the surface of 2 μm diameter ambient aerosol particles.  相似文献   

13.
The use of photoionization at atmospheric pressure shows great potential for the mass analysis of large apolar or hydrophobic peptides. Mass spectra that were obtained using this technique showed mainly singly charged ions. While polar peptides spectra do not produce fragment ions, others lead to B-type or C-type in-source fragmentation. These dissociation reactions, which could involve electron capture dissociation processes in the case of the C-type ions, are observed for hydrophobic peptides. Both the compatibility of this ionization mode with reversed- or normal-phase liquid chromatographic separation and its sensitivity allow liquid chromatography coupling to both mass spectrometry and tandem mass spectrometry for the analyses of hydrophobic peptide mixtures. Atmospheric pressure photoionization seems to be an interesting alternative method to study hydrophobic peptides that are not easily ionizable by more classical ionization techniques such as electrospray ionization and matrix-assisted laser desorption/ionization.  相似文献   

14.
Surface-induced dissociation by Fourier transform mass spectrometry   总被引:2,自引:0,他引:2  
A detailed procedure for performing surface-induced dissociation (SID) of ions in a dual-cell Fourier transform mass spectrometer is described. It is shown that the technique is applicable to both electron ionization and laser desorption measurements. SID spectra of perfluorotri-n-butylamine, anthracene, (5,10,15,20-tetraphenyl-21H,23H-prophinato)-iron(III) chloride, and [5,10,15,20-tetrakis(2,6-dibromo-phenyl)-21H,23H-prophina to]iron(III) chloride are presented. Conversion efficiencies of molecular ions between 1% and 30% are obtained. It is concluded the method holds promise for dissociation of high mass laser-desorbed ions.  相似文献   

15.
Multiphoton resonance ionization (MPRI) has been combined with ion-beam-induced desorption to examine a set of thermally labile biological molecules present on surfaces. Specifically, we have examined films of adenine and beta-estradiol, molecules with a rigid skeletal backbone. In both of these cases, molecular ions could be produced efficiently without cooling the neutral molecules into their ground vibrational state. We have also studied other more fragile molecules such as tryptamine, tryptophan, phenylalanine, and serotonin. The base peak in the mass spectra of these molecules is fragment ions formed by losses of the amine side chains. Even with this fragmentation, however, it is possible to achieve sensitivity limits that are many orders of magnitude greater than for secondary ion mass spectrometry, without preparing the samples in special matrices. For serotonin, detection limits of 40 fmol on the surface of a silicon target are achievable. The results also yield a linear relation between the serotonin base fragment ion intensity and the known surface concentration.  相似文献   

16.
Gold nanoparticles capped with 4-aminothiophenol have been employed for laser desorption ionization mass spectrometry of biomolecules. We demonstrate that the capped nanoparticles increase ion yields, decrease ion fragmentation, and increase the useful analyte mass range when compared to other nanoparticle systems. These results will allow for further development of nanoparticles with both targeting and enhanced ionization abilities to aid in biomarker screening.  相似文献   

17.
Schaaff TG 《Analytical chemistry》2004,76(21):6187-6196
Positive and negative ions generated by laser-based ionization methods from three gold:thiolate cluster compounds are mass analyzed by time-of-flight mass spectrometry. The three compounds have similar inorganic core masses ( approximately 29 kDa, approximately 145 Au atoms) but different n-alkanethiolate ligands associated with each cluster compound (Au:SR, R = butane, hexane, dodecane). Irradiation of neat films (laser desorption/ionization) and films generated by dilution of the cluster compounds in an organic acid matrix (matrix-assisted laser desorption/ionization) with a nitrogen laser (337 nm) produced distinct ion abundances that are relevant to different structural aspects of the cluster compound. Laser desorption/ionization of neat Au:SR compound films produces ions consistent with the inorganic core mass (i.e., devoid of original hydrocarbon content). Matrix-assisted laser desorption/ionization produces either ions with m/z values consistent with the core mass of the cluster compounds or ions with m/z values consistent with the approximate molecular weight of the cluster compounds, depending on ionization conditions. The ion abundances, and ionization conditions under which they are detected, provide insight into desorption/ionization processes for these unique cluster compounds as well as other analytes typically studied by matrix-assisted laser desorption/ionization.  相似文献   

18.
A matrix-assisted laser desorption/ionization (MALDI) ion trap mass spectrometer of new design is described. The instrument is based on a commercial Finnegan LCQ ion trap mass spectrometer to which we have added a MALDI ion source that incorporates a sample stage constructed from a compact disk and a new ion transmission interface. The ion interface contains a quadrupole ion guide installed between the skimmer and the octapoles of the original instrument configuration, allowing for operation in both MALDI and electrospray ionization modes. The instrument has femtomole sensitivity for peptides and is capable of collecting a large number of MALDI MS and MALDI MS/MS spectra within a short period of time. The MALDI source produces reproducible signals for 10(4)-10(5) laser pulses, enabling us to collect MS/MS spectra from all the discernible singly charged ions detected in a MS peptide map. We describe the different modes of the instrument operation and algorithms for data processing as applied to challenging protein identification problems.  相似文献   

19.
A nonmetallic sample support for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry enhances the positive ion yield by 2 orders of magnitude and generally affects the charge balance in the desorption plume. We interpret the effects of the target material and of the sample preparation on MALDI mass spectra as a result of photoelectrons emitted upon laser irradiation of a metal target covered by a thin sample layer. These electrons are shown to play an important role in MALDI and laser desorption/ionization because they decrease the yield of positive ions, reduce ions with higher oxidation states, and affect the ion velocity distribution as well as the mass resolution. Understanding the role of these photoelectrons helps to clarify previously obscure aspects of the ion formation mechanism in MALDI.  相似文献   

20.
Condensation of an ultraviolet absorbing liquid matrix onto aerosol particles was used to enhance the ionization efficiency of large molecules. Laboratory-generated particles were coated with matrix, deposited on a sample target, and analyzed by laser desorption mass spectrometry with no other matrix addition. The aerosol was generated in a Collison nebulizer, and the particles were dried in a diffusion dryer before entering a heated region saturated with the liquid matrix 3-nitrobenzyl alcohol (NBA) and then entering a cooled condensation region. Matrix-coated particles were collected on a sample target and analyzed using a 337-nm laser and a time-of-flight mass spectrometer. Particles containing the peptides gramicidin S and gramicidin D were analyzed both with and without the matrix addition step. Condensation addition of matrix increased the biomolecule ion signal and resulted in mass spectra with less fragmentation and low-mass ion interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号