首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The main objective of this article is to study the tribological behavior of Si3N4–hBN composites with different hexagonal boron nitride (hBN) volume fraction under distilled water lubrication. Water-lubricated sliding tests were carried out on a pin-on-disc tester, and Si3N4 was used as friction pair. The results showed that the addition of hBN to Si3N4 resulted in a severe decrease of the friction coefficient, from 0.35 for Si3N4 against Si3N4 to 0.01 for Si3N4-20% hBN against Si3N4 with drip-feed water lubrication; the friction coefficients of Si3N4–hBN/Si3N4 pairs sliding with full immersion water lubrication were as low as 0.01. The morphological and chemical characterization of the worn surfaces were conducted using scanning electron microscopy (SEM), laser scanning microscope, X-ray photoelectron spectroscopy (XPS). The analysis indicated that, with drip-feed water lubrication, hBN in Si3N4–hBN was spalled off during the wearing tests and spalling pits were formed on the wearing surface of Si3N4–hBN composites, then the wear debris were dropped into the pits and reacted with water, and thus a tribochemical film was formed on the wearing surface. The tribochemical film facilitated the wear surfaces of Si3N4–hBN and Si3N4 to smooth with drip-feed water lubrication, while the tribochemical remove facilitated the wear surfaces to smooth with full-immersion water lubrication.  相似文献   

2.
Unlubricated tribological behaviors of silicon nitride–boron nitride (Si 3 N 4 -hBN) composites were investigated with two test modes in air by using a pin-on-disc tribometer. Under upper-disc-on-bottom-pin test mode, the addition of hBN to Si 3 N 4 resulted in a significant decrease of the friction coefficient, from 0.54 for Si 3 N 4 against Si 3 N 4 to 0.19 for Si 3 N 4 -20% hBN against Si 3 N 4 . The surface analysis indicated that a tribochemical film consisting of SiO2 and H 3 BO 3 was formed on the wear surfaces. The formation of tribochemical film might be attributed to the embedment of wear debris into the spalling pits on the wear surfaces of Si 3 N 4 -hBN specimen. The wear debris reacted with moisture in air, and the resultant tribochemical film lubricated the wear surfaces. Under upper-pin-on-bottom-disc test mode, the wear mechanism was dominated by abrasive wear, and no tribochemical products could be detected on the wear surfaces. A slight decrease of the friction coefficient, from 0.85 for Si 3 N 4 /Si 3 N 4 to 0.56 for Si 3 N 4 /Si 3 N 4 -30% hBN, was obtained, which might be attributed to the layered structure of hBN.  相似文献   

3.
Friction and wear behaviors of diamond-like carbon (DLC) film in humid N2 (RH-100%) sliding against different counterpart ball (Si3N4 ball, Al2O3 ball and steel ball) were investigated. It was found that the friction and wear behaviors of DLC film were dependent on the friction-induced tribochemical interactions in the presence of the DLC film, water molecules and counterpart balls. When sliding against Si3N4 ball, a tribochemical film that mainly consisted of silica gel was formed on the worn surface due to the oxidation and hydrolysis of the Si3N4 ball, and resulted in the lowest friction coefficient and wear rate of the DLC film. The degradation of the DLC film catalyzed by Al2O3 ball caused the highest wear rate of DLC film when sliding against Al2O3 ball, while the tribochemical reactions between DLC film and steel ball led to the highest friction coefficient when sliding against steel ball.  相似文献   

4.
Ionic Liquid Lubrication Effects on Ceramics in a Water Environment   总被引:1,自引:0,他引:1  
Phillips  B.S.  Zabinski  J.S. 《Tribology Letters》2004,17(3):533-541
Ionic liquids were studied to determine their effectiveness as boundary lubricant additives for water. The chemical and tribochemical reactions that govern their behavior were probed to understand lubrication mechanisms. Under water lubricated conditions, silicon nitride ceramics are characterized by a running-in period of high friction, during which time the surface is modified causing a dramatic decrease in friction and wear. Two mechanisms have been proposed to explain the friction and wear behavior. Si3N4 sliding against itself may result in tribochemical reactions that form a hydrated silicon oxide layer on the surface of the sliding contact. This film has been suggested to mediate friction and wear. Others have suggested that tribo-dissolution of SiO2 results in an ultra smooth surface and after a running-in period of high wear, the lubrication mode becomes hydrodynamic. The goal of this study was to examine the effects that ionic liquids have on the friction and wear properties of Si3N4, in particular their effects on the running-in period. Tribological properties were evaluated using pin-on-disk and reciprocating tribometers. The tribological conditions of the tests were selected to produce mixed/hydrodynamic lubrication. The relative lubrication mode between mixed and hydrodynamic was controlled by the initial surface roughness. Solutions containing 2 wt% ionic liquids were produced for testing purposes. Chemical analysis of the sliding surfaces was accomplished with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The test specimens were 1 in diameter Si3N4 disks sliding against 1/4 in Si3N4 balls. The addition of ionic liquids to water resulted in dramatically reduced running-in periods for silicon nitride from thousands to the hundreds of cycles. Proposed mechanisms include the formation of BFx and PFx films on the surface and creation of an electric double layer of ionic liquid.  相似文献   

5.
Ti3Al coating was in situ synthesized successfully on pure Ti substrate by laser-cladding technology using aluminum powder as the precursor. The composition and microstructure of the prepared coating were analyzed by transmission electron microscopy, scanning electron microscopy (SEM), and X-ray diffraction technique. Thermal gravimetric analysis was used to evaluate the high-temperature oxidation resistance of the Ti3Al coating. The friction and wear behavior was tested through sliding against Si3N4 ball at elevated temperature of 20, 100, 300, and 500°C. The morphologies of the worn surfaces and wear debris were also analyzed by SEM and three-dimensional non-contact surface mapping. The results show that the Ti3Al coating with high microhardness, high-temperature oxidation resistance, and high temperature wear resistance. The pure Ti substrate is dominated by severe adhesion wear, abrasive wear, fracture, and severe plastic deformation at lower temperature, and severe adhesion wear, abrasive wear, plastic deformation, oxidation, and nitriding wear at higher temperature, whereas the Ti3Al coating experiences only moderate abrasive and adhesive wear when sliding against the Si3N4 ceramic ball counterpart. In addition, the wear debris of the laser-cladding Ti3Al coating sliding and Si3N4 friction pairs are much smaller than that of pure Ti substrate and Si3N4 friction pairs at elevated temperature.  相似文献   

6.
In this study, the tribological properties of traditional manganese phosphate coatings and composite hBN coatings

composed of nano-hexagonal boron nitride (hBN) in layered manganese phosphate crystals on AISI 1040 steel were investigated. Wear tests were carried out under controlled temperature and humidity using ball-on-disc tribometers for samples that were either submerged in oil or retaining oil on their surfaces at a sliding speed of 2.5 cm/s with loads of 1, 3, 5, and 10 N and sliding distances of 40, 80, 100, and 120 m. The surface profiles before and after the tests were used to characterize the wear. The surfaces of the coated samples were examined using scanning electron microscopy (SEM). The coefficients of friction and wear rates of the coated samples were also measured. The average wear rates of the composite hBN-coated samples were significantly lower than those of the traditional manganese phosphate–coated samples for each of the loading conditions for the oil submersion and retained oil tests. The coefficient of friction (COF) values for the traditional manganese phosphate–coated samples did not change significantly with increasing load. The COF values for the composite hBN coated–samples decreased with increasing load in the oil submersion test.  相似文献   

7.
A tribofilm was formed during wear tests of a Si3N4-white iron pair lubricated with distilled water. In order to clarify the formation of the film, the wear tests for Si3N4-white iron pair with different sliding distances were carried out on a ring-block tester, using distilled water as lubricant. The worn surfaces of white iron specimens were observed under SEM. Furthermore, the component and structure of the film were analyzed by using AES, XPS, FTIR and XRD. From the investigation, the following results are presented. During the wear tests of Si3N4-white iron pair lubricated with distilled water, the oxidation and hydrolysis of Si3N4 occur on the wearing surfaces, and a tribochemical film, which mainly consists of silica gel, is formed on the wearing surface. The reason for the film formation is that the carbides in cast iron spall off during the wearing tests and the spalling pits are left on the wearing surface of the white iron. Then, the debris of Si3N4 or its oxidized product are embedded into the pits, and are further oxidized and hydrolyzed. The products of reactions are concentrated in the pits and polycondensed into silica gel, and a silica gel film is formed on the wearing surface. The film protects both Si3N4 and white iron, and makes the paired surfaces smooth. Therefore, the friction coefficient of the pair is down to 0·02, and the wear rates of Si3N4 and iron are near zero. However, because the resultants of oxidation and hydrolysis of Si3N4 can not be enriched on the wearing surface of carbon steel to form an effective tribofilm, both friction coefficient and wear rate of Si3N4-carbon steel pair lubricated with distilled water are still high in value.  相似文献   

8.
T.E. Fischer  H. Tomizawa 《Wear》1985,105(1):29-45
Friction and wear of Si3N4 sliding on itself were measured at room temperature in different gaseous and liquid environments. At low sliding speed the friction coefficient ? is 0.85 in dry argon and nitrogen and 0.8 in laboratory air and oxygen. In dry gases, wear occurs by two fracture mechanisms: within 1 μm of the surface, asperity contact produces very large local stresses and cracking on a very fine scale; 3–5 μm deeper the fracture follows weaknesses of the material and is intergranular fracture with some transgranular cleavage. No evidence of plastic deformation was obtained. In water- and humidity-saturated gases wear is predominantly by a tribochemical reaction which produces an amorphous protective layer in humid gas and dissolution in liquid water. In intermediate humidity, wear is a combination of fracture and tribochemistry; the latter increases adhesion between wear particles to form a layer of compacted wear particles on the wear track. The fact that humidity decreases wear in Si3N4 and increases it in A12O3 is explained by the differences in chemical reactivity and susceptibility to stress corrosion cracking between the two materials.  相似文献   

9.
More durable, low-friction bearing materials over a wide temperature range are needed for turbine components and other high-temperature bearing applications. The current study reported the tribological properties of TiAl matrix self-lubricating composites (TMC) containing MoS2 (a low-temperature lubricant, below 500°C), hBN (a medium-temperature lubricant, below 600°C), and Ti3SiC2 (a high-temperature lubricant, above 600°C) designated as MhT against an Si3N4 counterface at temperatures ranging from 25 to 800°C in air. The load was 10 N and the sliding speed was 0.2 m/s for all tests. Tribological studies indicated that TMC containing MhT showed a lower friction coefficient and wear rate in comparison to TiAl-based alloy at all test temperatures, which was attributed to the excellent synergetic lubricating effect of MoS2, hBN, and Ti3SiC2. TMC containing 5 wt% MhT exhibited the best tribological properties over a wide temperature range.  相似文献   

10.
《Wear》2007,262(7-8):765-771
Nano-Si3N4 particles were electrodeposited with nickel on copper substrate from a Ni bath. The friction and wear properties of the Ni/Si3N4 composite coating were evaluated while being lubricated with several various oils using a ball-on-disk sliding tester. The morphologies of the worn surfaces were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy (XPS). Results indicated that the electrodeposited Ni/Si3N4 composition coating had excellent tribological properties while being lubricated with the ionic liquid. This was partly attributed to the high hardness of the electrodeposited nickel composite coating containing nano-sized Si3N4 and the tribochemical reaction between the lubricant and the sliding surface.  相似文献   

11.
This paper describes the lubrication mechanism of alcohols with silicon nitride under boundary lubrication conditions. Dynamic wear tests and static chemical reaction studies were conducted to study the chemical interaction between alcohols and silicon nitride. Direct evidence of chemical reactions occurring between alcohols and silicon nitride was collected. Gel-permeation-chromatography-graphite-furnace-atomic-absorption (GPC-GFAA) analysis detected the presence of high molecular weight (HMW), silicon-containing, metallo-organic compounds in the wearing contact. Secondary ion mass spectrometry (SIMS) analysis of the reaction products from wear tests revealed the formation of silicon alkoxides. These alkoxides subsequently reacted to form HMW products which had been independently verified as capable of lubricating silicon nitride surfaces. A two-ball collision test was used to verify the lubricating quality of the film generated from the wear test. A lubrication mechanism is proposed in which alcohols adsorb and react with the oxide/hydroxide layer of Si3N4 to produce a bonded surface silicon alkoxide. Subsequent tribochemical reactions prompted by the surface disruption from the wearing contact cause the formation of free silicon alkoxides. These species then proceed to form a variety of silicon-containing high molecular weight products that have demonstrable lubricating ability. This mechanistic understanding provides a framework of Si3N4 lubrication.  相似文献   

12.
TiAl matrix self-lubricating composites (TMC) with various weight percentages of Ti3SiC2 and MoS2 lubricants were prepared by spark plasma sintering (SPS). The dry sliding tribological behaviors of TMC against an Si3N4 ceramic ball at room temperature were investigated through the determination of friction coefficients and wear rates and the analysis of the morphologies and compositions of wear debris, worn surfaces of TMC, and the Si3N4 ceramic ball. The results indicated that TMC with 10 wt% (Ti3SiC2-MoS2) lubricants had good tribological properties due to the unique stratification subsurface microstructure of the worn surface. The friction coefficient was about 0.57, and the wear rate was 4.22 × 10?4 mm3 (Nm)?1. The main wear mechanisms of TMC with 10 wt% (Ti3SiC2-MoS2) lubricants were abrasive wear, oxidation wear, and delamination of the friction layer. However, the main wear mechanisms of TMC without Ti3SiC2 and MoS2 lubricants were abrasive wear and oxidation wear. The continuous friction layer was not formed on the worn surfaces. The self-lubricating friction layer on the frictional surface, different phase compositions and hardness, as well as density of TMC contributed to the change in the friction coefficient and wear rate.  相似文献   

13.
The tribological properties of a Fe3Al material in an aqueous solution of 1 mol/l H2SO4 corrosive environment sliding against a Si3N4 ceramic ball are studied using an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. We investigate the effects of load and sliding speed on tribological properties of the Fe3Al material. The worn surfaces of the Fe3Al material are examined by a scanning electron microscope (SEM) and an X-ray photoelectron spectroscope (XPS). It is found that the Fe3Al material exhibits better wear resistance than 1Cr18Ni9Ti stainless steel in the sulfuric acid corrosive environment. The wear rate of the Fe3Al material is on the order of 10?13 m3/m and increases with increasing load, but does not vary below the sliding speed of 0.08 m/s then dramatically increases with increasing sliding speed. The friction coefficient of the Fe3Al material is in the range of 0.1–0.28, and slightly increases with increasing load, and does not vary with the increase of sliding speed. The Fe3Al material occurs tribochemical reaction with the H2SO4 aqueous solution in the friction process. Wear mechanism of the Fe3Al material is dominated by microploughing and corrosive wear.  相似文献   

14.
Recent results of tribological properties of carbon nitride (CNx) coatings are reviewed. CNx coatings of 100 nm thickness were formed on Si-wafer and Si3N4 disks by the ion beam mixing method. Friction and wear tests were carried out against Si3N4 balls in the environments of vacuum, Ar, N2, CO2, O2 or air by a ball-on-disk tribo-tester in the load range of 80-750 mN and in the velocity range of 4-400 mm/s.It was found that friction coefficient μ is high (μ=0.2-0.4) in air and O2, and low (μ=0.01-0.1) in N2, CO2 and vacuum. The lowest friction coefficient (μ<0.01) was obtained in N2. It was also found that N2 gas blown to the sliding surfaces in air effectively reduced the friction coefficient down to μ≈0.017. Wear rate of CNx coatings varied in the range 10−9-10−5 mm3/N m depending on the environment.The wear mechanisms of CNx in the nanometer scale were studied by abrasive sliding of an AFM diamond pin in air. It was confirmed that the major wear mechanism of CNx in abrasive friction was low-cycle fatigue which generated thin flaky wear particles of nanometre size.  相似文献   

15.
Roll/slide friction tests were carried out at a temperature of 750°C in a vacuum. Disc specimens were made of Si3N4 with or without a sputtered MoS2 film. A pin specimen was rubbed against one disc to supply a lubricating transfer film. With a pin made of an MoS2‐based composite, the friction coefficient was around 0.3 and almost no wear of the discs was observed after 24 h of operation at a load of 50 N, a rotating speed of 0.5 m/s, and a slip ratio of 10%. Transferred patchy MoS2 films were observed on the friction track. With a pin made of Ni‐based composite containing BN and graphite, the friction coefficient increased from 0.2 to 0.7 over a test time of about 8 h and severe disc wear was found. In an additional test using Si3N4 discs with a sputtered MoS2 film without a pin, the friction coefficient was about 0.3, and no wear of the discs was found after 24 h of operation. The appearance of the friction track was similar to that in the test using the MoS2‐based composite pin. It seems that the sputtered MoS2 film wore, but wear particles reattached on the friction path to develop an effective lubricating film. These results demonstrate the effectiveness of transfer film lubrication for long‐term operation in a high‐temperature vacuum, and the superior ability of MoS2 to develop an effective transfer film.  相似文献   

16.
Thermosetting composites have been prepared by the use of a biobased resin and spent germ filler, which is a byproduct from a wet ethanol production plant. Microscale tribological measurements were performed on samples with different concentrations of the filler as well as the crosslinker using a ball-on-flat reciprocating microtribometer. Microscale friction and wear behavior during dry sliding were evaluated using a spherical silicon nitride probe (radius 1.2 mm) and a conical diamond (radius 100 μm, cone angle 90°) probe to impose different contact conditions. Finally, a pin-on-disc tribometer was used to study the macroscale wear properties at high loads against an alumina pin. Scanning electron microscopy (SEM) images of wear tracks on the samples were obtained to elucidate deformation mechanisms. All samples showed evidence of abrasive wear in both micro- and macro-scales. It was found that an increase in the concentration of the filler resulted in higher friction coefficients against Si3N4, while an increase in the concentration of the crosslinker lowered the abrasive wear depth. These results provide some insight into the effectiveness of using biobased spent germ–tung oil polymer composites as potential tribomaterials.  相似文献   

17.
Abstract

The friction and wear behaviour of a WC–12Co coating prepared by plasma spraying sliding against a Si3N4 ceramic ball, under the lubrication of liquid paraffin and ionic liquids 1-methyl-3-butylimidazolium hexafluorophosphate and 1-methyl-3-hexylimidazolium hexafluorophosphate at room temperature, was investigated using an SRV tester. The morphology and elemental distribution of the worn coating surfaces were characterised by means of scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser (EDXA) attachment, and the chemical state of typical elements in the boundary lubricating film on the worn coating surface was analysed by means of X-ray photoelectron spectroscopy (XPS). The SEM/EDXA analysis shows that phosphorus is uniformly distributed on the worn coating surface lubricated by ionic liquids. The XPS results also indicate that the boundary lubricating film is mainly composed of CoF2 and PFx and the tribochemical reaction products contribute to reducing the friction and wear of the plasma sprayed WC–12Co coating.  相似文献   

18.
The niobized layer was formed on Q235 low-carbon steel by double-glow plasma surface niobizing to improve its wear resistance. The microstructure, phase composition, and microhardness were determined. The friction and wear properties of the niobized samples and the untreated alloys were tested on a ball-on-disk tribometer by rubbing against GCr15 and silicon nitride (Si3N4) balls at room temperature and 400°C, respectively. The results indicated that the alloyed layer that contained a sediment layer and diffusion layer is about 35 μm in thickness, metallurgically adhered to the base metal. Niobium content was gradually decreased along the depth direction from the surface, which was similar to the change in the microhardness. The alloying layer mainly consisted of Nb, Fe2Nb, and FeNb phases. Under unlubricated sliding conditions, the friction coefficients and the specific wear rates were lower than those of the untreated carbon steel at room and high temperatures. The wear mechanism of the niobized specimen at room temperature is dominated by slightly abrasive wear, whereas the predominant wear mechanism is abrasive wear and fatigue delamination at high temperature.  相似文献   

19.
The fretting wear behaviour of bearing steel against bearing steel, silicon nitride against silicon nitride, and silicon nitride against bearing steel, was investigated under lubricated and dry conditions. Amplitudes in the intermediate 5 to 50 μm range, and test durations from 10 to 360 min, were studied. Light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were employed to determine the detailed nature of the friction and wear processes. In the silicon nitride against silicon nitride contact, brittle fracture of Si3N4 grains, and tribochemical reaction creating an amorphous layer on the mechanically damaged surface, were found. The main mechanism of fretting wear in the case of bearing steel against bearing steel contact was delamination. In the silicon nitride against bearing steel contact, chemical reactions predominated.  相似文献   

20.
A type of Si3N4/TiC micro-nanocomposite ceramic cutting tool material was fabricated using Si3N4 micro-matrix with Si3N4 and TiC nanoparticles. Cutting performance of the Si3N4/TiC ceramic cutting tool in dry cutting of hardened steel was investigated in comparison with a commercial Sialon insert. Hard turning experiments were carried out at three different cutting speeds, namely 97, 114, and 156 m/min. Feed rate (f) and depth of cut (a p) were fixed at 0.1 mm/rev and 0.2 mm, respectively. Results showed that cutting temperature increased rapidly to nearly 1000 °C with increasing cutting speed. The two types of cutting tools featured similar wear behavior. However, the Si3N4/TiC micro-nanocomposite ceramic cutting tool exhibited better wear resistance than the Sialon tool. Morphologies of crater and flank wear were observed with a scanning electron microscope. Results indicated that wear variation of the two types of ceramic cutting tools differed in the same conditions. Wear of the Si3N4/TiC micro-nanocomposite ceramic cutting tool is mainly dominated by abrasion and adhesion, whereas that of the Sialon ceramic cutting tool is dominated by abrasion, adhesion, thermal shock cracking, and flaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号