首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article investigates the radial extrudate swell and velocity profiles of polystyrene melt in a capillary die of a constant shear‐rate extrusion rheometer, using a parallel coextrusion technique. An electro‐magnetized capillary die was used to monitor the changes in the radial extrudate swell profiles of the melt, which is relatively novel in polymer processing. The magnetic flux density applied to the capillary die was varied in a parallel direction to the melt flow, and all tests were performed under the critical condition at which sharkskin and melt fracture did not occur in the normal die. The experimental results suggest that the overall extrudate swell for all shear rates increased with increasing magnetic flux density to a maximum value and then decreased at higher densities. The maximum swelling peak of the melt appeared to shift to higher magnetic flux density, and the value of the maximum swell decreased with increasing wall shear rate and die temperature. The effect of magnetic torque on the extrudate swell ratio of PS melt was more pronounced when extruding the melt at low shear rates and low die temperatures. For radial extrudate swell and velocity profiles, the radial swell ratio for a given shear rate decreased with increasing r/R position. There were two regions where the changes in the extrudate swell ratio across the die diameter were obvious with changing magnetic torque and shear rate, one around the duct center and the other around r/R of 0.65–0.85. The changes in the extrudate swell profiles across the die diameter were associated with, and can be explained using, the melt velocity profiles generated during the flow. In summary, the changes in the overall extrudate swell ratio of PS melt in a capillary die were influenced more by the swelling of the melt around the center of the die. Polym. Eng. Sci. 44:2298–2307, 2004. © 2004 Society of Plastics Engineers.  相似文献   

2.
Extrudate swell behavior of polystyrene (PS) and linear low‐density polyethylene (LLDPE) melts was investigated using a constant shear rate capillary rheometer. Two capillary dies with different design configurations were used, one being a single flow channel and the other being a dual flow channel. A number of extrudate swell related parameters were examined, and used to explain the discrepancies in the extrudate swell results obtained from the single and dual flow channel dies, the parameters including output rate and output rate ratio, power law index, wall shear rate, wall shear stress, melt residence time, pressure drop induced temperature rise, flow channel position relative to the barrel centerline, and the flow patterns. It was found in this work that the power law index (n value) was the main parameter to determine the output rate ratio and the extrudate swell between the large and small holes for the dual flow channel die: the greater the n value the lower the output rate ratio and thus decreased extrudate swell ratio. The differences in the extrudate swell ratio and flow properties for PS and LLDPE melts resulted from the output rate ratio and the molecular chain structure, respectively. The extrudate swell was observed to increase with wall shear rate. The discrepancies in the extrudate swell results from single and dual dies for a given shear rate were caused by differences in the flow patterns in the barrel and die, and the change in the melt velocities flowing from the barrel and in the die to the die exit. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1713–1722, 2003  相似文献   

3.
The extrudate swell ratio of five different thermoplastic melts flowing in a constant shear rate rheometer having a capillary die with and without application of magnetic field was studied. The effects of the magnetic flux direction and density, die temperature, and wall shear rate on the extrudate swell and flow properties were investigated. The experimental results suggested that an increasing wall shear rate increased the swelling ratio for the polystyrene (PS), LLDPE, and PVC melts, but the opposite effect was observed for the ABS and PC melts. The extrudate swell ratio for the PS, ABS, PC, and LLDPE melts decreased with increasing die temperature, the effect being reversed for the PVC melt. Thermoplastic melts having high benzene content in the side‐chain and exhibiting anisotropic character were apparently affected by the magnetic field, the extrudate swell ratio increasing with magnetic flux density. The effect of the magnetic field on the extrudate swell ratio decreased in the order of PS → ABS → PC. The extrudate swell ratio for the co‐parallel magnetic field system was slightly higher than that for the counter‐parallel magnetic field system at a high magnetic flux density. POLYM. ENG. SCI., 47:270–280, 2007. © 2007 Society of Plastics Engineers.  相似文献   

4.
The effect of die wall temperature on the extrudate swell of polymer melts flowing through dies with single and dual circular channels was studied. Extrudate swell was measured at constant flow rates using an Instron capillary rheometer with a modified die section. It was found that under isothermal conditions, extrudate swell plotted against the average wall shear stress gave rise to a temperature independent correlation for polystyrene. Under non-isothermal conditions, such a correlation did not exist, which might be due to the change of wall shear stress in the axial direction. The extrudate swell in the non-isothermal cases can be better correlated with the wall shear stress at die exit. For the two-hole die, changes of die wall temperature varied both the flow rate ratio and the extru date swell ratio. The latter is, however, much less sensitive to the die wall temperature than the former.  相似文献   

5.
The extrudate swell behavior and extrudate texture of various thermoplastic melts, namely, polystyrene (PS), low‐density polyethylene (LDPE), acrylonitrile‐butadiene styrene (ABS) copolymer, poly(vinyl chloride) (PVC), and their blends, were examined weith a magnetic die system in a constant‐shear‐rate capillary rheometer at a shear rate range 5–28 s?1 and a temperature range 170–230 °C. The extrudate swell results obtained from the magnetic die were then compared with those produced by a nonmagnetic die. The results showed that the extrudate swell increased with shear rate, but decreased with temperature. In a pure polymer system, up to 25% increase in the extrudate swell was observed with the application of the magnetic field to the PS melt, and the effect decreased in the order ABS > LDPE > PVC. The extrudate swell changes were associated with the changes in rheological properties of the melts. The extrudate textures of the ABS and PVC melts were improved by the magnetic field. In PS/LDPE or PS/ABS blend, it was found that the magnetic die resulted in higher values of the extrudate swell than the nonmagnetic die for all blends, the magnetic effect being less as the LDPE or ABS content was increased. For PS/LDPE system, the extrudate swell of the PS melt did not change much with addition of 20% LDPE, but slightly decreased at the LDPE loading of 40%. At higher LDPE loadings, the extrudate swell increased towards the value of the pure LDPE melt. For PS/ABS system, the extrudate swell ratio progressively decreased with increasing ABS content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 509–517, 2002  相似文献   

6.
A study on the melt elasticity behavior and extrudate characteristics of melts of rigid poly(vinyl chloride), PVC, and rigid poly(vinyl chloride)/epoxidized natural rubber (ENR) miscible blends were conducted. Extrusion studies were carried out in a capillary rheometer and examinations of the surface characteristics of the extrudate were made by taking photomicrographs in a scanning electron microscope. The anomalous behavior in the die swell ratio of rigid PVC arising from the particle agglomerates continued in its blends up to 50 wt% composition of ENR. Temperature independence for high ENR blends was noted for the principal normal stress difference and elastic shear modulus, when shear stress was held constant. Recoverable shear strain and die swell ratio behaved identically in terms of blend composition and processing temperature. Factors which control the extrudate distortion and melt fracture of the melts of rigid PVC/ENR systems were fusion of particle agglomerates and strength of melts. Diamond cavitations were typical of the extrudate surface of PVC melts as those of the fracture surface of the tensile failure of PVC. Conditions to obtain a smooth extrudate surface of rigid PVC melts in blends with ENR have been found to be the low ENR content, low shear rate, or stress and high processing temperature.  相似文献   

7.
梁基照 《广州化工》1996,24(2):19-23
应用毛细管流变仪,考察了实验条件下线性低密度聚乙烯与低密度聚乙烯共混物(LLDPE/LDPE)熔体挤出胀大行为及其影响因素。结果表明,挤出胀大比B与剪切应力近似呈幂律关系,而随口型长径比的增加呈指数衰减,当共混比为50/50时,B产生局部极涉值现象。  相似文献   

8.
Experimental investigations were performed to see how the die exit geometry and the extrusion velocity influence on extrudate swell and melt fracture for several polymer melts [low-density polyethylene, styrene-butadiene rubber (SBR) and SBR/HAF (carbon black) compound]. Four different types of die exit geometry were considered; 0° (symmetric. usual capillary die), and 30°, 45° and 60° (asymmetric dies) were chosen for the die exit angle. Extrudate diameters were measured without draw-down under isothermal condition. Polymer melts were extruded into an oil that has the same density and temperature as those of the extrudate. Extrudate swells from dies with different diameters were correlated with volumetric flow rates. It was observed that the extrudate swell increases with increasing volumetric flow rate and exhibits through a minimum value at about 45° die exit angle. As to the fracture phenomena, it was observed that the critical shear for the onset of melt fracture increases with the increasing die exit angle up to 45°. However, for 60° die exit angle, the onset of melt fracture is again similar to that of 0° exit angle.  相似文献   

9.
PVC profile extrusion compounds have a unique morphology. While other polymers gradually decrease in extrusion die swell with increasing length/thickness (L/D) ratio, PVC profile extrusion compounds have a low die swell, quite independent of the die's L/D ratio in the range of 5 to 20. The fact that the die land length can be changed without changing the extrudate swell is an important consideration, which makes die design and balancing dies simpler and easier for PVC profile extrusion compounds. While other polymers substantially increase extrudate swell with increased shear rate, the swell of the PVC profile compounds is not much affected by shear or extrusion rate. This unique behavior allows wider processing latitude in profile extrusion and faster extrusion rates than with other polymers. Another unique factor in the rheology of PVC profile extrusion compounds is that extrusion die swell increases with increasing melt temperature, while other polymers have decreasing die swell with increasing melt temperature. The unusual rheology of PVC profile extrusion compounds is attributed to its unique melt morphology, where the melt flow units are 1 um bundles and molecules that have low surface to surface interaction and entanglement at low processing temperatures but increased melting and increased entanglement at higher processing temperatures. Other polymers, unlike PVC, have melt flow at the molecular level.  相似文献   

10.
肖兵  邓小珍 《中国塑料》2015,29(12):77-81
基于Bird-Carreau黏度模型,运用有限元方法对三维等温微管挤出成型流动模型进行了数值分析,主要研究了管壁厚度对微管挤出成型过程中挤出胀大、速度分布、剪切速率和口模压降等重要指标的影响。结果表明,当熔体入口体积流率相等时,随着管壁厚度的增大,挤出物挤出胀大率和横截面尺寸变化量增大;口模出口端面上熔体的二次流动增强,但挤出速度和剪切速率减小;熔体在口模内的压力降明显下降;适当增加管壁厚度,有利于提高微管挤出质量。  相似文献   

11.
The melt Theological behavior of nitrile rubber (NBR)/ethylene-vinyl acetate (EVA) copolymer blends was studied with special reference to the effect of the blend ratio, cross-linking systems, and shear rate using a capillary rheometer. At a given shear stress at 90°C, the viscosities of the blends vary slightly with composition. The effect of cross-linking systems [viz., sulfur (S), peroxide (DCP) and mixed (S+DCP) systems] on the viscosity of NBR/EVA blends is negligible. The melt viscosity of the blends decreases with increasing shear rate, showing pseudoplastic behavior. The flow behavior index values also support the pseudoplastic nature of these blends. Various theoretical models were used to predict the melt viscosity of the blends. Parameters such as die swell, principal normal stress difference, recoverable shear strain, and shear modulus were calculated to characterize the melt elasticity of these blends. The melt elasticity of the system was increased by the addition of NBR to EVA. The extrudate deformation at different shear rates was also studied. It was observed that as the shear rate increases, the extrudate surface exhibits a higher degree of deformation. The morphology of the extrudates of the blends at different shear rates has been examined by a scanning electron microscope. The morphology was found to be dependent on the blend ratio and shear rate.  相似文献   

12.
《Polymer Composites》2017,38(11):2433-2439
The extrudate swell behavior of polypropylene (PP) composite melts filled with multi‐walled carbon nanotubes (MWCNTs) was studied using a capillary rheometer in a temperature range from 190 to 230°C and at various apparent shear rates varying from 50 to 800 s−1. It was found that the values of the extrudate swell ratio of the composites increased nonlinearly with increasing apparent shear rates, while the values of the extrudate swell ratio decreased almost linearly with increasing temperature. The values of the melt extrudate swell ratio increased approximately linearly with increasing shear stress, while decreased approximately nonlinearly with an increase of the MWCNT weight fraction. In addition, the extrudate swell mechanisms were discussed with observation of the fracture surface of the extrudate using a scanning electronic microscopy. This study provides a basis for further development of MWCNTs reinforced polymer composites with desirable mechanical and thermal properties. POLYM. COMPOS., 38:2433–2439, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
An investigation was carried out to examine the effect of die/barrel system on the flow patterns and extrudate swell of natural rubber in the barrel of a capillary rheometer, using a colored tracer as the visualization technique. The capillary rheometer used in this work had two dies located along the barrel, which is novel in rheometer design. The flow of the rubber in the upper barrel was dependent on the piston/barrel action and changed with piston displacement, whereas the complexity of the flow in the lower barrel was dependent not only on the piston displacement, but also on the geometry of the upper die design. The flow patterns that developed in the whole barrel were independent of the die located at the bottom of the barrel. In addition, the change in extrudate swell was associated with the flow occurring in the barrel, residence time, elastic characteristic, and the temperature rise during the flow. It was concluded that the general style of the flow patterns of natural rubber was greatly dependent on the die geometry that the material had previously moved past. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2525–2533, 2001  相似文献   

14.
The rheological behavior of highly filled ethylene propylene diene rubber (EPDM) compounds was studied with respect to the effect of curative system, grafted rubber, shear rate, temperature and die swell using a Monsanto Processability Tester (MPT) to gain an understanding of the molecular parameters that control the surface finish. All systems show pseudoplastic behavior. At a particular shear rate, shear viscosity increases with blend ratio. The dependence of flow behavior on extrusion velocity indicates a surface effect. The extrudate die swell and maximum recoverable deformation are related by a linear relationship, which is independent of sulfur/accelerator ratio, extrusion temperature and shear rates and blend ratio. The principal normal stress difference increases nonlinearly with shear stress. Activation energy decreases with shear rate in most cases. The faster relaxing system produces extrudate of better surface quality.  相似文献   

15.
EPDM橡胶的流变特性实验研究   总被引:1,自引:0,他引:1  
赵建才 《弹性体》2006,16(4):11-13
为了研究橡胶熔体流变性能对其加工成型的影响,利用毛细管流变仪对三元乙丙橡胶(EPDM)的流变特性进行了实验研究。实验结果表明:EPDM橡胶在毛细管挤出时,剪切速率对剪切应力、剪切粘度和挤出胀大的影响最大;挤出温度对三者有一定的影响;在长径比相同时,毛细管半径对剪切应力和剪切粘度几乎没有影响,但对挤出胀大影响较大。  相似文献   

16.
Extrusion of a hot polymer melt through a cooler die zone substantially increases the extrudate swell of some thermoplastics. This effect was examined for commercial samples of low-density polyethylene, polypropylene, and polystyrene. Two conflicting effects come into play during extrusion of a thermoplastic. Colder melt temperatures promote increased extrudate swell, but the same conditions also facilitate molecular disentanglement and reduced melt elasticity and die swell. Since the extrusion process itself may affect the relation between die swell and melt temperature, laboratory-scale measurements for the design of processes like blow molding are better carried out with small-scale screw extruders than with capillary rheometers. For some applications it may be advantageous to use a polymer whose die swell is particularly responsive or unresponsive to die temperature variations. The procedure described in this article can be used effectively to monitor this characteristic.  相似文献   

17.
使用毛细管流变仪考察了3种高填充聚丙烯(PP)纳米复合材料的挤出胀大行为,研究了口模温度、剪切速率、熔体压力、纳米粒子填充比例和纳米粒子形貌对PP纳米复合材料熔体挤出胀大比的影响。结果表明,3种PP纳米复合体系熔体的挤出胀大比均随口模温度的增加而减小,且大致呈线性关系;随着剪切速率的增大而增加,且随着填料填充比例的增加有减小的趋势;随着熔体压力的增大而增加,并且随着熔体压力的增加,其挤出胀大比随填料填充比例的增加而减小的幅度下降;3种颗粒形貌纳米粒子填充体系中,在相同的体积分数和温度下,片状结晶纳米氢氧化镁[Mg(OH)2]填充体系熔体挤出胀大比最小,球状纳米碳酸钙(CaCO3)填充体系熔体挤出胀大比最大,棒状粒子埃洛石纳米管(HNTs)填充体系熔体挤出胀大比介于两者之间。  相似文献   

18.
The shear viscosity, extensional viscosity, and die swell of the PTT melt were investigated using a capillary rheometer. The results showed that the PTT melt was a typical pseudoplastic fluid exhibiting shear thinning and extensional thinning phenomena in capillary flow. There existed no melt fracture phenomenon in the PTT melt through a capillary die even though the shear rate was 20,000 s?1. Increasing the shear rate would decrease the flow activation energy and decline the sensitivity of the shear viscosity to the melt temperature. The molecular weight had a significant influence on the flow curve. The flow behavior of the PTT melt approached that of Newtonian fluid even though the weight‐molecular weight was below 43,000 s?1 at 260°C. The extensional viscosity decreased with the increase of the extensional stress, which became more obvious with increasing the molecular weight. The sensitiveness of the extensional viscosity to the melt temperature decreased promptly along with increasing the extensional strain rate. The die swell ratio and end effect would increase along with increasing the shear rate and with decreasing the temperature, which represented that the increase of the shear rate and the decrease of temperature would increase the extruding elasticity of the PTT melt in the capillary die. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 705–709, 2005  相似文献   

19.
借助流变测量和连续介质理论,不依赖已有的本构关系,对平行叠加正弦振动条件下高分子熔体经毛细管的动态挤出过程进行了理论分析。以低密度聚乙烯(LDPE)为原材料,实验测量LDPE熔体在一定振动频率和振幅下毛细管入口压力、体积流量和挤出胀大的瞬态值,即可得到动态成型过程中高分子熔体剪切应力、剪切速率和表观粘度的变化规律:随振幅和频率的变化,LDPE熔体的表观粘度呈非线性变化趋势;在不同的振幅和频率下动态挤出LDPE熔体,跟稳态挤出时一样,壁面剪切应力与壁面剪切速率也成非线性比例关系。  相似文献   

20.
A comparative experimental study of extrudate swell from long slit and capillary dies is reported for rheologically characterized polystyrene and polypropylene melts. Generally extrudate swell from a slit is greater than that from a capillary die. At low die wall shear rates it goes to a value of about 1.2 as opposed to about 1.1 found for capillary dies. The onset and character of extrudate distortion have been studied. The experimental results are compared with theories of swell based on unconstrained recovery from Poiseuille flow in these geometries. A detailed analysis of such theories of extrudate swell based on the original work of Tanner has been carried out. The analysis is placed in a more general form which should be valid for a range of die cross-sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号