首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A liquid diglycidyl ether of bisphenol A (DGEBA) epoxy resin is blended in various proportions with amine‐terminated polyoxypropylene (POPTA) and cured using an aliphatic diamine hardener. The degree of crosslinking is varied by altering the ratio of diamine to epoxy molecules in the blend. The mixture undergoes almost complete phase separation during cure, forming spherical elastomer particles at POPTA concentrations up to 20 wt %, and a more co‐continuous morphology at 25 wt %. In particulate blends, the highest toughness is achieved with nonstoichiometric amine‐to‐epoxy ratios, which produce low degrees of crosslinking in the resin phase. In these blends, the correlation between GIC and plateau modulus (above the resin Tg), over a wide range of amine‐to‐epoxy ratios, confirms the importance of resin ductility in determining the fracture resistance of rubber‐modified thermosets. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 427–434, 1999  相似文献   

2.
A series of bio-rubber (BR) reactive tougheners for thermosetting epoxy resins was prepared by grafting renewable saturated fatty acids of different chain lengths (C6-C14) onto epoxidized soybean oil (ESO) at varying molar ratios. The tunable nature of the BR systems derives from the architecture and functionality of naturally occurring molecules. Control of BR reactivity and molecular weight by varying the degree of grafting and the chain length of the fatty acid was demonstrated. The BR-toughened samples were prepared by blending BRs with diglycidyl ether of bisphenol A (DGEBA), Epon 828, and stoichiometrically curing the mixture using an aromatic amine hardener, diethyl toluene diamine (Epikure W). Fracture surface morphology studies showed that tuning of phase separated particle sizes was possible depending on the BR type and weight fraction. The resulting toughening effect was evaluated by measuring the fracture toughness of control and toughened polymer samples. The use of BRs significantly improved the critical strain energy release rate and critical stress intensity factor values of thermosetting polymer samples without significantly reducing Tg and modulus. In addition to toughening and adding renewable content to petroleum-based thermosetting epoxy systems these new tougheners have low viscosity compared to common alternatives and aid ease of processing.  相似文献   

3.
The effects of additives such as 2-undecyl-imidazole (C11Z) and chromium acetylacetonate (Cr(acac)3) were examined on the curing behavior and fracture toughness of tetraglycidyldiaminodiphenyl methane/diaminodiphenyl sulphone (TGDDM/DDS) epoxy resins and their composites. The C11Z additive alone reacted with TGDDM epoxy resins at about 127°C and increased the resin viscosity, resulting in an acceptable resin content for composite processing. Further addition of Cr(acac)3 to TGDDM/DDS/C11Z formulation increased the fracture toughness 5.7 times compared to the typical TGDDM/DDS/BF3MEA epoxy formulation used for the preparation of laminates. The interlaminar fracture toughness of the laminates prepared by TGDDM/DDS/C11Z/Cr(acac)3 formulation was only twice as much as that prepared by typical TGDDM/DDS/BF3MEA. This was due to the fiber bridging contribution to the interlaminar fracture toughness. Based on the experiment, this fiber bridging contribution was only dependent on the fiber content. Thus, the interlaminar fracture toughness is approximated by the sum of the fracture toughness of epoxy matrix and the estimated fiber bridging contribution.  相似文献   

4.
An attempt was made to toughen diglycidyl ether of bisphenol A (DGEBA) type epoxy resin with liquid natural rubber possessing hydroxyl functionality (HTLNR). Epon 250 epoxy monomer is cured using nadic methyl anhydride as hardener in presence of N, N dimethyl benzyl amine as accelerator. HTLNR of different concentrations up to 20 wt % is used as modifier for epoxy resin. The addition HTLNR to an anhydride hardener/epoxy monomer mixture has given rise to the formation of phase-separated structure, consisting of small spherical liquid natural rubber particles bonded to the surrounding epoxy matrix. The particle size increased with increase in rubber content. The viscoelastic properties of the blends were analyzed using dynamic mechanical thermal analysis. The Tg corresponding to epoxy rich phase was evident from the dynamic mechanical spectrum, while the Tg of the rubber phase was overlapped by the β relaxation of epoxy phase. Glass transition of the epoxy phase decreased linearly as a function of the amount of rubber. The mechanical properties such as impact and fracture toughness were also carefully examined. The impact and fracture toughness increase with HTLNR content. A threefold increase in impact strength was observed with 15 wt % HTLNR/epoxy blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The influence of an organically modified clay on the curing behavior of three epoxy systems widely used in the aerospace industry and of different structures and functionalities was studied. Diglycidyl ether of bisphenol A (DGEBA), triglycidyl p‐amino phenol (TGAP) and tetraglycidyl diamino diphenylmethane (TGDDM) were mixed with an octadecyl ammonium ion modified organoclay and cured with diethyltoluene diamine (DETDA). The techniques of dynamic mechanical thermal analysis (DMTA), chemorheology and differential scanning calorimetry (DSC) were applied to investigate gelation and vitrification behavior, as well as catalytic effects of the clay on resin cure. While the formation of layered silicate nanocomposite based on the bifunctional DGEBA resin has been previously investigated to some extent, this paper represents the first detailed study of the cure behavior of different high performance, epoxy nanocomposite systems.  相似文献   

6.
Liquid nitrile rubber, hyperbranched polyester, and core/shell rubber particles of various functionality, namely, vinyl, carboxyl, and epoxy, were added up to 20 wt % to a bisphenol‐A‐based vinylester–urethane hybrid (VEUH) resin to improve its toughness. The toughness was characterized by the fracture toughness (Kc) and energy (Gc) determined on compact tensile (CT) specimens at ambient temperature. Toughness improvement in VEUH was mostly achieved when the modifiers reacted with the secondary hydroxyl groups of the bismethacryloxy vinyl ester resin and with the isocyanate of the polyisocyanate compound, instead of participating in the free‐radical crosslinking via styrene copolymerization. Thus, incorporation of carboxyl‐terminated liquid nitrile rubber (CTBN) yielded the highest toughness upgrade with at least a 20 wt % modifier content. It was, however, accompanied by a reduction in both the stiffness and glass transition temperature (Tg) of the VEUH resin. Albeit functionalized (epoxy and vinyl, respectively) hyperbranched polymers were less efficient toughness modifiers than was CTBN, they showed no adverse effect on the stiffness and Tg. Use of core/shell modifiers did not result in toughness improvement. The above changes in the toughness response were traced to the morphology assessed by dynamic mechanical thermal analysis (DMTA) and fractographic inspection of the fracture surface of broken CT specimens. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 672–680, 2002; DOI 10.1002/app.10392  相似文献   

7.
Toughened epoxy systems have found increasing applications in automotive, aerospace, and electronic packaging industries. The present article reported work done for elucidation of gelation and vitrification for various epoxy systems and their blends with dendritic hyperbranched polymers (HBPs) having epoxy and hydroxyl functionality. Gel time was found to increase with increasing functionality from diglycidyl ether of bisphenol A (DGEBA) to tetraglycidyl diaminodiphenyl methane (TGDDM). The vitrification point was clearly identified from rheological experiments for triglycidyl p‐amino phenol (TGAP) and TGDDM. In the case of DGEBA a clear display of vitrification was not observed. TGDDM underwent vitrification sooner than did TGAP. Hydroxyl‐functionalized HBP reduced the gel time of the blends because of the accelerating effect of –OH groups to the epoxy curing reaction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1604–1610, 2004  相似文献   

8.
This article reports on the use of low viscosity liquid thermosetting hyperbranched poly(trimellitic anhydride‐diethylene glycol) ester epoxy resin (HTDE) as an additive to an epoxy amine resin system. Four kinds of variety molecular weight and epoxy equivalent weight HTDE as modifiers in the diglycidyl ether of bisphenol‐A (DGEBA) amine systems are discussed in detail. It has been shown that the content and molecular weight of HTDE have important effect on the performance of the cured system, and the performance of the HTDE/DGEBA blends has been maximum with the increase of content and molecular weight or generation of HTDE. The impact strength and fracture toughness of the cured systems with 9 wt % second generation of HTDE are 58.2 kJ/m2 and 3.20 MPa m1/2, which are almost three and two times, respectively, of DGEBA performance. Furthermore, the tensile and flexural strength can be enhanced about 20%. The glass transition temperature and Vicat temperature, however, are found to decrease to some extent. The fracture surfaces are evaluated by using scanning electron microscopy, which showed that the homogeneous phase structure of the HTDE blends facilitates an enhanced interaction with the polymer matrix to achieve excellent toughness and strength enhancement of the cured systems, and the “protonema” phenomenon in SEM has been explained by in situ reinforcing and toughening mechanism and molecular simulation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2504–2511, 2006  相似文献   

9.
The fracture behavior of a bisphenol A diglycidylether (DGEBA) epoxy, Araldite F, modified using carboxyl‐terminated copolymer of butadiene and acrylonitrile (CTBN) rubber up to 30 wt%, is studied at various crosshead rates. Fracture toughness, KIC, measured using compact tension (CT) specimens, is significantly improved by adding rubber to the pure epoxy. Dynamic mechanical analysis (DMA) was applied to analyze dissolution behavior of the epoxy resin and rubber, and their effects on the fracture toughness and toughening mechanisms of the modified epoxies were investigated. Scanning electron microscopy (SEM) observation and DMA results show that epoxy resides in rubber‐rich domains and the structure of the rubber‐rich domains changes with variation of the rubber content. Existence of an optimum rubber content for toughening the epoxy resin is ascribed to coherent contributions from the epoxy‐residing dispersed rubber phase and the rubber‐dissolved epoxy continuous phase. No rubber cavitation in the fracture process is found, the absence of which is explained as a result of dissolution of the epoxy resin into the rubber phase domains, which has a negative effect on the improvement of fracture toughness of the materials. Plastic deformation banding at the front of precrack tip, formed as a result of stable crack propagation, is identified as the major toughening process.  相似文献   

10.
This paper reports on the use of an epoxidized hyperbranched polymer (HBP) as an additive to an epoxy anhydride resin system. The hyperbranched polymer used was an aliphatic polyester with a molecular weight of around 10 500 g mol?1. The epoxy resin mixture used was a combination of a difunctional diglycidyl ether of bisphenol A (DGEBA) epoxy and an epoxy novolac, and was cured with a catalysed anhydride curing agent. It has been shown that, at a concentration range of 0 to 20 wt% addition, the HBP is able to almost double the fracture toughness, with little evidence of any deleterious effects upon processing and the durability of the cured resin system. The flexural modulus and stress, however, were found to both decrease by about 30% as a result of HBP addition while the Tg was found to decrease by about 10%. The processability of the uncured resin systems has been investigated by using rheological and calorimetric techniques and it was found that the processability window, as determined by the gel time and viscosity changes, was relatively unaffected by HBP addition. The fracture surfaces were evaluated by using scanning electron microscopy which showed that the unique structure of the HBP facilitates an enhanced interaction with the polymer matrix to achieve excellent toughness enhancement of the polymer matrix. The durability of the epoxy network has been investigated via thermogravimetric analysis (TGA) and solvent uptake, and the HBP has been shown to have little systematic deleterious effect upon the degradation temperatures and the total amount of solvent absorbed. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
An epoxy resin based on nonglycidyl ether and varying content of carboxyl‐terminated (poly)butadiene acrylonitrile copolymer was cured using an aromatic amine hardener. The ultimate aim of the study was to modify the brittle epoxy matrix by the liquid rubber to improve toughness characteristics. Fourier transform infrared spectroscopic analysis of the modified was performed to understand the structural transformations taking place during the uncured and cured stage of the modified systems. The decreasing trend in exothermal heat of reaction with increasing rubber content in the epoxy resin can be explained by the fact that the increase of carboxyl‐terminated butadiene acrylonitrile copolymer (CTBN) modifier might induce a high reactivity of the end groups with the epoxide ring and resulting shorter curing times and, hence, the faster curing process than the unmodified resin. Tensile strength, impact strength, and elongation‐at‐break behaviors of neat as well as modified networks have been studied to observe the effect of rubber modification. Blends sample exhibits better properties as compared to pure epoxy resin in terms of increase in impact strength and elongation‐at‐break of the casting and gloss, scratch hardness, adhesion, and flexibility of the film. The improvement in these properties indicate that the rubber‐modified resin would be more durable than the epoxy based on di glycidyl ether of bis‐phenol‐A and other epoxies. The films of coating based on epoxy with 15 wt % CTBN offered the maximum resistance toward different concentrations of acids, alkalies, and solvents as compared to the cured films of other blend samples. The thermal stability of the cycloaliphatic‐based epoxy resin was increased with the addition of 15 wt % CTBN in epoxy matrix. Cycloaliphatic‐based epoxy network modified with CTBN displayed two phase separated morphology with dispersed rubber globules in the matrix resin, i.e., they revealed the presence of two phase morphological features. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The influence of the end groups of two liquid rubbers on curing kinetics, morphology, and hardness behavior of diglycidyl ether of bisphenol-A based epoxy resin (DGEBA) has been studied. The rubbers are silyl-dihydroxy terminated (PDMS-co-DPS-OH) and silyl-diglycidyl ether terminated (PDMS-DGE). Crosslinking reactions, investigated by shear rheometry, ranged 90–110 °C, using a constant concentration (5 phr) of liquid rubbers and 1,2-Diamino cyclohexane (1,2-DCH) as hardener agent. The gel time, t gel, of the neat epoxy significantly decreased when adding the elastomers, more so for the silyl-dihydroxy terminated elastomer; at 110 °C the reaction was nearly complete before rheological test started. The results suggest that the elastomers induced a catalytic effect on the curing reaction. Scanning electron microscopy revealed phase separation of the elastomer during the curing reaction with rubber domains about 5 μm size. However, the DGEBA/dihydroxy terminated elastomer composite cured at 110 °C exhibited a homogenous morphology, that is, the rapid reaction time would not allow for phase separation. Water contact angle tests evidenced either more hydrophilic (silyl-diglycidyl ether terminated rubber) or more hydrophobic (silyl-dihydroxy terminated rubber) behavior than the neat epoxy. The latter effect is attributed to the presence of aromatic rings in the backbone structure of PDMS-co-DPS-OH. Microindentation measurements show that the elastomers significantly reduced the hardness of the epoxy resin, the DGEBA/ether terminated composite exhibiting the lowest hardness values. Moreover, hardness increased as reaction temperature did, correlating with a reduction of microdomains size thus enabling the tuning of mechanical properties with reaction temperature.  相似文献   

13.
Hyperbranched epoxy resin shows best comprehensive performance in epoxy resin system and is considered as a kind of toughness and reinforcement additive. This article reports on the use of novel hyperbranched poly(trimellitic anhydride-butanediol glycol) ester epoxy resin (HTBE) prepared by us as a functional additive to an epoxy amine resin system. The effect of molecular weight and content of the HTBE on the performance of the diglycidyl ether of bisphenol-A (DGEBA)/HTBE hybrid resin are discussed in detail, and their performance has maximum with the increase of content and molecular weight of HTBE. The impact strength and fracture toughness of the hybrid resin containing 9 wt% second generation of HTBE are 48.2 kJ/m2 and 2.71 MPa m1/2, and which almost are 2.77 and 1.5 times of DGEBA performance respectively. Furthermore, the tensile and flexural strength can also be enhanced about 17%. The fracture surface micrograph of hybrid resin shows no microphase separation of the HTBE/DGEBA blends that facilitates an enhanced interaction to achieve excellent toughness and strength enhancement of the cured systems by scanning electron microscope (SEM). A novel situ reinforcing and toughening mechanism and model are discovered and confirmed by SEM, molecular simulation, and dynamic mechanical thermal analysis technology. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
Non‐amine‐derived tetrafunctional epoxies have several advantages over the amine‐derived N,N,N′,N′‐tetraglycidyl‐4,4′‐diaminodiphenyl methane (TGDDM) in high temperature applications. Although two non‐amine‐derived tetrafunctional epoxies were developed in our laboratory, further improvements in toughness using less loading amount is still desirable. Thus, a tertiary‐amine‐free, non‐planar and triphenylmethane‐containing tetrafunctional epoxy (STFE) with a sulfone spacer was synthesized. When it was mixed with diglycidyl ether of bisphenol A (DGEBA) and cured with 4,4′‐diaminodiphenylsulfone (DDS), both thermal and mechanical performances outperformed TGDDM. Moreover, STFE modified system shows the highest toughness (35.7 kJ m–2) among three amine‐free and triphenylmethane‐containing epoxies at merely 5 wt% loading. Molecular simulation and thermomechanical analysis results suggest that the improved mechanical properties could be related to the geometry of the molecule and larger free volume. Despite a marginal drop in Tg, the thermal degradation temperature is better than that of TGDDM/DDS. In addition, the moisture resistance of STFE/DGEBA/DDS is much better than that of TGDDM/DDS. Thus, STFE modified DGEBA could be a potential replacement for TGDDM in some high temperature applications. © 2020 Society of Chemical Industry  相似文献   

15.
Epoxidized natural rubbers (ENRs) were prepared. ENRs with different concentrations of up to 20 wt % were used as modifiers for epoxy resin. The epoxy monomer was cured with nadic methyl anhydride as a hardener in the presence of N,N‐dimethyl benzyl amine as an accelerator. The addition of ENR to an anhydride hardener/epoxy monomer mixture gave rise to the formation of a phase‐separated structure consisting of rubber domains dispersed in the epoxy‐rich phase. The particle size increased with increasing ENR content. The phase separation was investigated by scanning electron microscopy and dynamic mechanical analysis. The viscoelastic behavior of the liquid‐rubber‐modified epoxy resin was also evaluated with dynamic mechanical analysis. The storage moduli, loss moduli, and tan δ values were determined for the blends of the epoxy resin with ENR. The effect of the addition of rubber on the glass‐transition temperature of the epoxy matrix was followed. The thermal stability of the ENR‐modified epoxy resin was studied with thermogravimetric analysis. Parameters such as the onset of degradation, maximum degradation temperature, and final degradation were not affected by the addition of ENR. The mechanical properties of the liquid‐natural‐rubber‐modified epoxy resin were measured in terms of the fracture toughness and impact strength. The maximum impact strength and fracture toughness were observed with 10 wt % ENR modified epoxy blends. Various toughening mechanisms responsible for the enhancement in toughness of the diglycidyl ether of the bisphenol A/ENR blends were investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39906.  相似文献   

16.
High performance epoxy resin was obtained by introducing hyperbranched polyborate (HBPB) into diglycidyl ether of bisphenol A (DGEBA) resin to overcome the defects such as low char yield and poor toughness of DGEBA resin. By virtue of the massive functional end groups, hyperbranched and rigid boron‐containing structures of HBPB, the thermal resistance of DGEBA resin cured with diamino diphenyl sulfone (DDS) can be greatly improved. Moreover, with the toughening effect of hyperbranched structures of HBPB, the mechanical properties such as flexural strength and interlaminar shear strength of the carbon fiber reinforced DGEBA‐DDS composite could be greatly increased by HBPB without a decrease on modulus and glass transition temperature of DGEBA‐DDS resin. POLYM. COMPOS. 36:424–432, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
The present study focuses on the preparation of a novel hybrid epoxy nanocomposite with glycidyl polyhedral oligomeric silsesquioxane (POSS) as nanofiller, carboxyl terminated poly(acrylonitrile‐co‐butadiene) (CTBN) as modifying agent and diglycidyl ether of bisphenol A (DGEBA) as matrix polymer. The reaction between DGEBA, CTBN, and glycidyl POSS was carefully monitored and interpreted by using Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). An exclusive mechanism of the reaction between the modifier, nanofiller, and the matrix is proposed herein, which attempts to explains the chemistry behind the formation of an intricate network between POSS, CTBN, and DGEBA. The mechanical properties, such as tensile strength, and fracture toughness, were also carefully examined. The fracture toughness increases for epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems with respect to neat epoxy, but for hybrid composites toughening capability of soft rubber particles is lost by the presence of POSS. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. The viscoelastic properties of epoxy/CTBN, epoxy/POSS, and epoxy/CTBN/POSS hybrid systems were analyzed using dynamic mechanical thermal analysis (DMTA). The storage modulus shows a complex behavior for the epoxy/POSS composites due to the existence of lower and higher crosslink density sites. However, the storage modulus of the epoxy phase decreases with the addition of soft CTBN phase. The Tg corresponding to epoxy‐rich phase was evident from the dynamic mechanical spectrum. For hybrid systems, the Tg is intermediate between the epoxy/rubber and epoxy/POSS systems. Finally, TGA (thermo gravimetric analysis) studies were employed to evaluate the thermal stability of prepared blends and composites. POLYM. COMPOS., 37:2109–2120, 2016. © 2015 Society of Plastics Engineers  相似文献   

18.
A multifunctional epoxy tetraglycidyl dibenzmethyldiamine and triglycidyl benzylamine were blended, respectively, into impregnation resin, which mainly consists of diglycidyl ether of bisphenol A (DGEBA) and acid anhydride hardener. This resin is expected to impregnate HT‐7U superconducting Tokamak toroidal field coils and improve the fracture toughness of DGEBA–acid anhydride resin at cryogenic temperature. However, the experimental results reveal that resin lap shear strengths decrease remarkably both at ambient and liquid nitrogen temperatures. After blending multifunctional epoxy for several hours, its viscosity increased quickly at room temperature. The usable potting life is too short to impregnate large coils such as those used in fusion reaction. By FTIR the possible reason was investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1385–1389, 2003  相似文献   

19.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) and principal components analysis (PCA) were used to analyze diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) epoxy resin blend cured with isophorone diamine (IPD) hardener at different resin to hardener ratios. The aim was to establish correlations between the hardener concentration and the nature and progress of the crosslinking reaction. Insights into the cured resin structure revealed using ToF‐SIMS are discussed. Three sets of significant secondary ions have been identified by PCA. Secondary ions such as C14H7O+, CHO+, CH3O+, and C21H24O4+ showed variance related to the completion of the curing reaction. Relative intensities of CxHyNz+ ions in the cured resin samples are indicative of the un‐reacted and partially reacted hardener molecules, and are found to be proportional to the resin to hardener mixing ratio. The relative ion intensities of the aliphatic hydrocarbon ions are shown to relate to the cured resin crosslinking density. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Phenolphthalein poly(ether ether ketone) (PEK‐C) was found to be miscible with uncured tetraglycidyl 4,4′‐diaminodiphenylmethane (TGDDM), which is a type of tetrafunctional epoxy resin (ER), as shown by the existence of a single glass transition temperature (Tg) within the whole composition range. The miscibility between PEK‐C and TGDDM is considered to be due mainly to entropy contribution. Furthermore, blends of PEK‐C and TGDDM cured with 4,4′‐diaminodiphenylmethane (DDM) were studied using dynamic mechanical analysis (DMA), Fourier‐transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). DMA studies show that the DDM‐cured TGDDM/PEK‐C blends have only one Tg. SEM observation also confirmed that the blends were homogeneous. FTIR studies showed that the curing reaction is incomplete due to the high viscosity of PEK‐C. As the PEK‐C content increased, the tensile properties of the blends decreased slightly and the fracture toughness factor also showed a slight decreasing tendency, presumably due to the reduced crosslink density of the epoxy network. SEM observation of the fracture surfaces of fracture toughness test specimens showed the brittle nature of the fracture for the pure ER and its blends with PEK‐C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 598–607, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号