首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental infrastructure investment (EII) is an important environmental policy instrument on responding to greenhouse gas (GHG) emission and air pollution. This paper employs an improved stochastic impact by regression on population, affluence and technology (STRIPAT) model by using panel data from 30 Chinese provinces and municipalities for the period of 2003–2015 to investigate the effect of EII on CO2 emissions, SO2 emissions, and PM2.5 pollution. The results indicate that EII has a positive and significant effect on mitigating CO2 emission. However, the effect of EII on SO2 emission fluctuated although it still contributes to the reduction of PM2.5 pollution through technology innovations. Energy intensity has the largest impact on GHG emissions and air pollution, followed by GDP per capita and industrial structure. In addition, the effect of EII on environmental issues varies in different regions. Such findings suggest that policies on EII should be region-specific so that more appropriate mitigation policies can be raised by considering the local realities.  相似文献   

2.
Global warming and the associated changes in the world climate pattern have been accepted world wide as the gravest threat to humanity in the 20th century. To mitigate the impacts of global warming, the Kyoto Protocol was established in 1997 with the objective of reducing global greenhouse gases (GHGs) emission, in particular carbon dioxide (CO2), by 5.2% below 1990 levels. Developed nations that ratified the Protocol are committed to GHG reduction targets while developing nations are encouraged to reduce GHG emissions on a voluntary basis. Since most of the GHGs emissions come from the energy sector, energy policy plays an important role in fulfilling the Kyoto Protocol obligations. This year marks the beginning of the commitment period for the 2012 Kyoto Protocol. In this case, it would be worthwhile to compare the energy policies in Malaysia and Japan as these nations move towards fulfilling their obligations towards the Kyoto Protocol; bearing in mind that both countries ratified the Protocol, but that Japan commits a reduction target of 6% while Malaysia bears no obligation. Based on the comparison, recommendations were made on how a developing nation like Malaysia could adopt the policies implemented in Japan to suit local conditions and contribute significantly to GHG reduction.  相似文献   

3.
Stephen E. Schwartz 《Energy》1993,18(12):1229-1248
Tropospheric sulfate aerosols produced by atmospheric oxidation of SO2 emitted from fossil fuel combustion scatter solar radiation and enhance the reflectivity of clouds. Both effects decrease the absorption of solar radiation by the earth-atmosphere system. This cooling influence tends to offset the warming influence resulting from increased absorption of terrestrial infrared radiation by increased atmospheric concentrations of CO2. The sulfate forcing is estimated to be offsetting 70% of the forcing by CO2 derived from fossil fuel combustion, although the uncertainty of this estimate is quite large--range 28 to 140%, the latter figure indicating that the present combined forcing is net cooling. Because of the vastly different atmospheric residence times of sulfate aerosol (about a week) and CO2 (about 100 years), the cooling influence of sulfate aerosol is exerted immediately, whereas most of the warming influence of CO2 is exerted over more than 100 years. Consequently the total forcing integrated over the entire time the materials reside in the atmosphere is net warming, with the total CO2 forcing estimated to exceed the sulfate forcing by a factor of 4 (uncertainty range 2 to more than 10). The present situation in which the forcing by sulfate is comparable to that by CO2 is shown to be a consequence of the steeply increasing rates of emissions over the industrial era.  相似文献   

4.
It is necessary for Japan to support the development of desulfurization policies of China to solve global and local environmental problems. This study proposes a “double clean development mechanism” to reduce both CO2 and SO2 emissions at the same time. The purpose of this study is to investigate the consequences for both countries' energy economies of following double clean development mechanism between Japan and China. A dynamic optimization model is developed to estimate the effects of Japanese investments in China for carbon dioxide recovery-disposal and emission desulfurization technologies. The simulation results suggest that a double clean development mechanism can effectively mitigate the damage caused by SO2 emissions because the clean development mechanism itself can reduce SO2 emissions, e.g. by switching to fuels. However, China might not be willing to accept restrictions on SO2 emissions. This study also examines whether China will be able to maintain high growth rates with a clean development mechanism under the CO2 and SO2 restriction. The analysis shows that increasing the upper limit of investment from Japan to China can enhance the economies of the both nations. The effect of nuclear power installation on economic performance is also investigated for the both nations.  相似文献   

5.
The objective of this study is to evaluate the potential for recovering fluorocarbons as measures for the abatement of global warming. In this study, we focused on the three different kinds of fluorocarbons: CFCs, HCFCs and HFCs, and targeted refrigerant use because of the availability of relevant data. We first estimated future fluorocarbon emissions from the targeted appliances; we next compared those emissions in the units of CO2 equivalent to the level of CO2 emissions in 1990 from a quantitative point of view. As the result of this study, it was found that fluorocarbon emissions in 1999 and 2010 would be equal to approximately 7 and 3% of the level of CO2 emissions in 1990 respectively. Moreover, if we implement a 100% recovery rate in every recovery route, we can reduce a large amount of emissions which correspond to approximately 2–5% of the level of CO2 emissions in 1990, even if we take into account the energy-related CO2 emissions by the transportation and decomposition of fluorocarbons.  相似文献   

6.
A natural gas (NG) fired power plant is designed with virtually zero emissions of pollutants, including CO2. The plant operates in a gas turbine-steam turbine combined cycle mode. NG is fired in highly enriched oxygen (99.7%) and recycled CO2 from the flue gas. Liquid oxygen (LOX) is supplied by an on-site air separation unit (ASU). By cross-integrating the ASU with the CO2 capture unit, the energy consumption for CO2 capture is significantly reduced. The exergy of LOX is used to liquefy CO2 from the flue gas, thereby saving compression energy and also delivering product CO2 in a saleable form. By applying a new technique, the gas turbine efficiency is increased by about 2.9%. The net thermal efficiency (electricity out/heat input) is estimated at 45%, compared to a plant without CO2 capture of 54%. However, the relatively modest efficiency loss is amply compensated by producing saleable byproducts, and by the virtue that the plant is pollution free, including NOx, SO2 and particulate matter. In fact, the plant needs no smokestack. Besides electricity, the byproducts of the plant are condensed CO2, NO2 and Ar, and if operated in cogeneration mode, steam.  相似文献   

7.
The damage inflicted by global warming is happening far faster than any experts have predicted or anticipated. Since the Kyoto Protocol was signed in 1997 to fight global warming through reducing global greenhouse gases (GHGs) emission, the world climate pattern has worsened at an accelerated rate beyond expectation. While developed countries sanctioned by the protocol are committed to achieve their GHG emission targets, developing nations play similar roles on a voluntary basis. Since almost all of the GHGs emissions come from energy sector, it is obvious that energy policy and related regulatory frameworks play imperative roles in realizing the Kyoto Protocol objectives. With carbon dioxide (CO2) touted as the main remedy in the GHGs emissions, it is only reasonable that carbon trading becomes the essential element in the Protocol. Recently a milestone is marked in the Kyoto Protocol with the 2009 Climate Summit in Copenhagen, Denmark, with all participating countries further committed themselves in fulfilling the protocol's obligations before the commitment period due in 2012. It is worthwhile to review the various energy efficiency efforts and carbon trading potential in Malaysia, a country which although does not bear any obligation, has ratified and lauded the cause of the protocol. Malaysia as a developing nation is seen as a direct beneficiary from carbon trading and in this paper, how the country energy policies have evolved over the years with concerted efforts from the government to minimize its carbon footprint through numerous energy efficiency implementations are discussed in length. The impact from the 2009 Climate Summit on Malaysia is also briefed.  相似文献   

8.
You Li  C.N. Hewitt   《Energy Policy》2008,36(6):1907-1914
We estimate the amount of carbon dioxide embodied in bi-lateral trade between the UK and China in 2004. Developing and applying the method of Shui and Harriss [2006. The role of CO2 embodiment in US–China trade. Energy Policy 34, 4063–4068], the most recently available data on trade and CO2 emissions have been updated and adjusted to calculate the CO2 emissions embodied in the commodities traded between China and the UK. It was found that through trade with China, the UK reduced its CO2 emissions by approximately 11% in 2004, compared with a non-trade scenario in which the same type and volume of goods are produced in the UK. In addition, due to the greater carbon-intensity and relatively less efficient production processes of Chinese industry, China–UK trade resulted in an additional 117 Mt of CO2 to global CO2 emissions in the same one year period, compared with a non-trade scenario in which the same type and volume of goods are produced in the UK. This represents an additional 19% to the reported national CO2 emissions of the UK (555 Mt/y in 2004) and 0.4% of global emissions. These findings suggest that, through international trade, very significant environmental impacts can be shifted from one country to another, and that international trade can (but does not necessarily) result in globally increased greenhouse gas emissions. These results are additional to the environmental consequences of transporting goods, which are not robustly quantified here.  相似文献   

9.
This paper analyzes the roles of key factors (i.e., changes in structure, fuel mix and final demand) on total economy-wide changes in CO2, SO2 and NOx emissions when power sector development follows the integrated resource planning (IRP) approach instead of traditional supply-based electricity planning (TEP). It also considers the rebound effect (RE) of energy efficiency improvements in the demand side and analyzes the sensitivity of the results to variations in the values of the RE. A framework is developed to decompose the total economy-wide change in the emission of a pollutant into four major components, i.e., structural change-, fuel mix- , final demand- and joint-effects. The final demand effect is further decomposed into three categories, i.e., construction of power plants, electricity final demand and final demand related to electricity using equipments. The factor decomposition framework is then applied in the case of the power sector in Indonesia. A key finding in the case of Indonesia is that in the absence of the RE, there would be total economy-wide reductions in CO2, SO2 and NOx emissions of 431, 1.6 and 1.3 million tons respectively during the planning horizon of 2006–2025 under IRP as compared to that under TEP. The decomposition analysis shows that the final demand effect would account for 38% of the total CO2 emission reduction followed by the structural change effect (35.1%) and fuel mix effect (27.6%) while the joint effect is negligible. The study also shows that economy-wide CO2 emission reduction due to IRP considering the RE of 45% would be 241 million tons as compared to 333 million tons when the RE is 25%.  相似文献   

10.
Govinda R. Timilsina   《Energy Policy》2008,36(6):1927-1936
This study analyzes CO2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO2 at 450 ppm (550 ppm including non-CO2 greenhouse gases) level. It also determines CO2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO2 concentrations at 450 ppm requires the global trend of CO2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO2 trend in (i) 2020 and (ii) 2025. The study shows that global CO2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030.  相似文献   

11.
Utilization of nuclear energy is an effective way of solving the global warming resulting from CO2 emissions. Thermal energy accounts for more than two thirds of total energy utilization at present and therefore it is significant to extend the utilization of nuclear heat for the effective reduction of CO2 emissions in the world. This paper describes a coal gasification system using HTGR nuclear heat in an ammonia production plant in terms of industrial utilization of the nuclear heat. The system uses the nuclear heat directly in addition to generating electricity. A steam reforming method using a two-stage coal gasifier is employed: it improves the heat utilization efficiency of the secondary helium gas from the HTGR. Finally, the paper clarifies that the nuclear gasification system can reduce CO2 emissions by about five hundred thousand tons per year from that of a conventional system using fossil fuel.  相似文献   

12.
The results of an experimental study of the excess-air-dependent heat losses, as well as gaseous emissions (NOx, SO2 and CO), on a 150 MW boiler firing Thai lignite are discussed. The NOx emissions were found to increase with the higher excess air ratios; the NOx values in the flue gas (at 6% O2) ranged from 257 to 325 ppm, whilst the excess air ratio varied from 1.06 to 1.32 at the economizer outlet. Owing to the highly-efficient operation of the flue gas desulfurization units, the SO2 emissions from the unit were maintained at a relatively low level, 50–76 ppm for the above excess-air ratios, whereas they accounted for about 3100–3300 ppm at the inlet of the FGD units. The CO emissions were determined for the extremely low excess air ratios. Two approaches for the optimization of the excess air ratio were analyzed in this study. For the first, i.e. the conventional approach, the optimization was carried out based on minimizing the total excess-air-dependent heat losses. The second, the environmentally friendly approach, proposed in this work, was aimed at minimizing the “external” costs (or the costs of damage done by the boiler emissions to the environment and humans). As shown in this paper, the lignite firing at the optimal excess air results in a lower environmental impact by the boiler unit.  相似文献   

13.
The aim of this paper is to describe the energetic metabolism of a retail park service system under an integrative approach. Energy flow accounting was applied to a case study retail park in Spain, representative of the sector across Europe, after redefining the functional unit to account for both direct energy use (buildings, gardens and outdoor lighting) and indirect energy use (employee and customer transportation). A life cycle assessment (LCA) was then undertaken to determine energy global warming potential (GWP) and some energy intensity and greenhouse gases (GHG) emission indicators were defined and applied. The results emphasise the importance of service systems in global warming policies, as a potential emission of 9.26 kg CO2/purchase was obtained for the case study, relating to a consumption of 1.64 KOE of energy, of which 21.9% was spent on buildings and 57.9% on customer transportation. Some strategies to reduce these emissions were considered: increased supply, energy efficiency, changes in distribution of modes of transport, changes in location and changes in the mix of land uses. A combination of all of these elements in a new retail park could reduce GHG emissions by more than 50%, as it is planning strategies, which seem to be the most effective.  相似文献   

14.
One of the most current and widely discussed factors that could lead to the ultimate end of man's existence and the world at large is global warming. Global warming, described as the greatest environmental challenge in the 21st century, is the increase in the average global air temperature near the surface of the Earth, caused by the gases that trap heat in the atmosphere called greenhouse gases (GHGs). These gases are emitted to the atmosphere mostly as a result of human activities, and can lead to global climate change. The economic losses arising from climate change presently valued at $125 billion annually, has been projected to increase to $600 billion per year by 2030, unless critical measures are taken to reduce the spate of GHG emissions. Globally, the power generation sector is responsible for the largest share of GHG emissions today. The reason for this is that most power plants worldwide still feed on fossil fuels, mostly coal and consequently produce the largest amount of CO2 emitted into the atmosphere. Mitigating CO2 emissions in the power industry therefore, would significantly contribute to the global efforts to control GHGs. This paper gives a brief overview of GHGs, discusses the factors that aid global warming, and examines the expected devastating effects of this fundamental global threat on the entire planet. The study further identifies the key areas to mitigate global warming with a particular focus on the electric power industry.  相似文献   

15.
This paper discusses recent topics related indirectly to energy production and marketing and related highly to energy policy and economy. These topics are: (1) background to carbon taxes including environmental issues — global warming and CO2 emissions, fuel substitution and the encouragement of non-hydrocarbon fuel use; (2) climate-change convention and related conferences including those at Rio de Janeiro — objectives and achievements, and Kyoto-objectives; (3) carbon-tax proposals, including implications for oil, coal and gas: (4) The OECD view including evolution of general taxes on hydrocarbons, the carbon tax as a government revenue-raising objective, CO2 emissions in the OECD; (5) the oil-producer's view including discrimination against oil, the impact on the incentives to use oil and gas; (6) the developing countries' view, including the need to increase fuel use for industrialisation, financial constraints on energy use, and CO2 emissions in the developing countries.  相似文献   

16.
Energy-related CO2 emission projections of China up to 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the multi-criteria approach is used for assessment of priority technologies.

The results of this study show (1) Given population expansion and high GDP growth, energy-related CO2 emissions will increase in China. (2) There exists a large energy conservation potential in China. (3) Adjustment of industry structure and increase of shares of products with high added value have and will play a very important role in reducing energy intensity of GDP. (4) Energy conservation and substitution of coal by natural gas, nuclear power, hydropower and renewable energy will be the key technological measures in a long-term strategy to reduce GHG emission. (5) Identification and implementation of GHG mitigation technologies is consistent with China's targets of sustainable development and environmental protection. (6) Energy efficiency improvement is a “no-regret” option for CO2 reduction, whereas an incremental cost is needed to develop hydropower and renewable energy.  相似文献   


17.
Urban centers are the major consumers of energy, which is a major source of air pollution. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying impacts and finding solution to air pollution in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from the household sector of Delhi. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2001–2021 and emissions of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane volatile organic compounds (NMVOCs), nitrogen oxides (NOx), nitrous oxide (N2O), total suspended particulates (TSP) and sulfur dioxide (SO2) are estimated. Different scenarios are generated to examine the level of pollution reduction achievable by application of various options. The business as usual (BAU) scenario is developed considering the time series trends of energy use in Delhi households. The fuel substitution (FS) scenario analyzes policies having potential to impact fuel switching and their implications towards reducing emissions. The energy conservation (EC) scenario focuses on efficiency improvement technologies and policies for energy-intensity reduction. An integrated (INT) scenario is also generated to assess the cumulative impact of the two alternate scenarios on energy consumption and direct emissions from household sectors of Delhi. Maximum reduction in energy consumption in households of Delhi is observed in the EC scenario, whereas, the FS scenario seems to be a viable option if the emission loadings are to be reduced.  相似文献   

18.
The greenhouse effect is explained, followed by a discussion of the US fossil fuel use and its contribution of greenhouse gases. US electric utilities' share of CO2 and other emissions is quantified, including the effects of using various fuels. The possible recovery and disposal of CO2 from power-plant flue gases is also discussed. The information presented should help prepare electric utilities to address future public concerns and the related regulatory pressures regarding the utility's role in carbon-dioxide proliferation and global warming  相似文献   

19.
用传统湿式浸渍法制备La2O3掺杂的商业γ-Al2O3负载的沼气重整催化剂Ni-Co/La2O3-γ-Al2O3,通过对NiCo双金属催化剂上沼气重整制氢在常压下的宏观动力学分析,得出该催化剂上CH4与CO2消耗、H2与CO生成时的表观反应速率方程.通过改变进料中CH4与CO2的分压,求出各物质的反应分级数,确定总反应...  相似文献   

20.
In this paper, the potential to reduce CO2 emissions from dimethyl carbonate production by switching from the traditional phosgene-based production to a urea-based CO2 utilization process is assessed. The total CO2 emission for each process is estimated, including emissions related to the carbon content of the products, energy consumption in the production process, and energy consumption in the production processes of the required reactants. Implementation of the CO2 utilization process probably will reduce total CO2 emissions. However, in order to achieve substantially reduced CO2 emissions, serious consideration must be given to the optimization and design of the CO2 utilization process. Furthermore, the fuel-mix employed is one of the factors that influences the total CO2 emission the most.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号