首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Ceramics International》2016,42(10):11519-11524
AlN ceramics have been prepared with CeO2 as a sintering aid at a sintering temperature of 1900 °C. The effect of CeO2 contents on the microstructure, density, thermal conductivity and hardness was investigated. Addition of CeO2 exerted a significant effect on the densification of AlN ceramics and hence on the microstructure. Thermal conductivity of AlN ceramics increased with CeO2 content and was greater than that of Y2O3-doped AlN ceramics at a similar sintering temperature. The resulting AlN ceramics with 1.50 wt% of CeO2 had the highest relative density of 99.94%, thermal conductivity of 156 W m−1 K−1 and hardness of 72.46 kg/mm2.  相似文献   

2.
Sintering performance at high temperatures is a serious issue for tetravalent metal pyrophosphate MP2O7 ceramics (M = Ti, Zr, Hf, Ge, Sn, etc.). Herein, we investigated the influence of high synthesis temperatures and amounts of ZrP2O7 precursors on the properties of ZrP2O7 ceramics. A ZrP2O7 powder was first synthesised via a solid-state reaction; this powder was used in the fabrication of the ZrP2O7 ceramic using a combination of two-step sintering and in situ bonding using MgO as the sintering aid. The phase composition and microstructure of the ZrP2O7 powder as well as the ZrP2O7 ceramic were studied by X-ray diffraction and scanning electron microscopy. The physical properties and room-temperature thermal conductivity of the ZrP2O7 ceramic were investigated. The ceramic exhibited high thermal stability at 1350 °C. This study indicates that the mechanical properties of the ZrP2O7 ceramic can be enhanced while maintaining their low thermal conductivity by sintering it at 1300 °C with the addition of an appropriate amount of the ZrP2O7 precursors to the ZrP2O7 powder.  相似文献   

3.
A systematical ab initio analysis of ZrP2O7 is presented in this work. Density functional theory (DFT) computations were performed for the electronic, mechanical, lattice dynamical and thermal properties of ZrP2O7. The lattice constants determined from the theoretical calculation are consistent with the experimental results. Based on the analyses on the electronic density of states, charge density and electron localization function of ZrP2O7, heterogeneous bonding nature is revealed and confirmed by the phonon density of states. We also reported the second-order elastic constants and polycrystalline mechanical properties of ZrP2O7 for the first time. According to the calculated polycrystalline moduli, the minimum thermal conductivity of ZrP2O7 is estimated to be 1.15 W m−1 K−1. Our theoretical results illustrate that ZrP2O7 is a promising candidate as thermal barrier coating and high temperature binding material.  相似文献   

4.
Sintering at high temperature is a serious problem for porous thermal insulating ceramics. To search for sintering-resistant ceramics, ZrP2O7 is selected as the backbone material and porous ZrP2O7 ceramics with 40−60 vol% porosities and strength of 3−14 MPa are fabricated. The volume shrinkage of the 60 vol% porosity ZrP2O7 is only 1.4 % when heated at 1773 K for 6 h and the thermal conductivity, which is as low as 0.18 W m-1 K-1, keeps almost unchanged. The dielectric constants are stable in the frequency range of 7−19 GHz when the temperature increases from 298 K to 1273 K. As the porosity increases from 44 % to 60 %, the dielectric constant at 19 GHz and 1273 K decreases from 3.4 to 2.5. Good sintering-resistance, ultra-low thermal conductivity and low dielectric constant at high temperatures make porous ZrP2O7 suitable for applications as thermal insulating and wave-transmitting materials at high temperatures.  相似文献   

5.
We developed a new method, i.e. microwave-induced combustion synthesis to produce highly sinterable Y2O3-doped CeO2 nanopowders. The process took only 15 min to yield Y2O3-doped CeO2 powders. We also investigated the conductivity of Y2O3-doped CeO2 ceramics. It was found Y2O3 concentration to have a large effect on the morphology, activation energy, ionic conductivity, and mechanical properties of Y2O3-doped CeO2 ceramics. The results revealed that the bulk densities of Y2O3-doped CeO2 ceramics sintered at 1420 °C for 5 h were all higher than 92% of the theoretical densities, and the maximum ionic conductivity, σ800 °C = 0.023 S/cm at 800 °C, the minimum activation energy, Ea = 0.954 eV determined in the temperature of 300–800 °C and the maximum fracture toughness, KIC = 1.825 ± 0.188 MPa m1/2 were found for 9 mol.% Y2O3-doped CeO2 specimen. The grain size of CeO2 decreases with increasing Y2O3 concentration. The fracture toughness was found to increase at increased Y2O3 concentration, because of the decrease of CeO2 grain size.  相似文献   

6.
This study demonstrated the synthesis of novel zirconium pyrophosphate (ZrP2O7) ceramic foams via a two-step method using a foam casting technique. The synthesised foams functioned as thermal insulators with a highly controllable performance. We investigated the effects of the addition of foaming and thickening agents as well as the solid content of the slurries on the slurry, mechanical properties, thermal conductivities, and microstructure of ZrP2O7 ceramic foams. The ZrP2O7 ceramic foams synthesised at 1473 K exhibited a porosity, compressive strength, and thermal conductivity of 75.2–89.1 %, 1.95–0.02 MPa, and 0.144–0.057 W/(m K) (298–573 K), respectively. The increase in the porosity to >60 % will facilitate applications based on the low thermal conductivities of the foams.  相似文献   

7.
The abnormal grain growth (AGG) behavior of undoped and SiO2-doped CaCu3Ti4O12 (CCTO) ceramics were investigated. With the addition of 2 wt.% SiO2, the AGG-triggering temperature decreased from 1100 to 1060 °C, and the temperature for obtaining a uniform and coarse microstructure decreased from 1140 to 1100 °C. The lowering of the AGG temperature by SiO2 addition was attributed to the formation of a CuO-SiO2-rich intergranular phase at lower temperature. The apparent dielectric permittivity of coarse SiO2-doped CCTO ceramics was ∼10 times higher than that of fine SiO2-doped CCTO ceramics at the frequency of 103–105 Hz. The doping of SiO2 to CCTO ceramics provides an efficient route of improving the dielectric properties via grain coarsening. The correlation between the microstructure and apparent permittivity suggests the presence of a barrier layer near the grain boundary.  相似文献   

8.
Well-densified 10 mol% Dy2O3-doped CeO2 (20DDC) ceramics with average grain sizes of ∼0.12–1.5 μm were fabricated by pressureless sintering at 950–1550 °C using a reactive powder thermally decomposed from a carbonate precursor, which was synthesized via a carbonate coprecipitation method employing nitrates as the starting salts and ammonium carbonate as the precipitant. Electrical conductivity of the ceramics, measured by the dc three-point impedance method, shows a V-shape curve against the average grain size. The sample with the smallest grain size of 0.12 μm exhibits a high conductivity of ∼10−1.74 S/cm at the measurement temperature of 700 °C, which is about the same conduction level of the micro-grained 10 mol% Sm2O3- or Gd2O3-doped CeO2, two leading electrolyte materials.  相似文献   

9.
《Ceramics International》2021,47(22):31375-31382
Novel Ce2(MoO4)2(Mo2O7) (CMO) ceramics were prepared by a conventional solid-state method, and the microwave dielectric properties were investigated. X-ray diffraction results illustrated that pure Ce2(MoO4)2(Mo2O7) structure formed upon sintering at 600 °C-725 °C. [CeO7], [CeO8], [MoO4], and [MoO6] polyhedra were connected to form a three-dimensional structure of CMO ceramics. Analysis based on chemical bond theory indicated that the Mo–O bond critically affected the ceramics’ performance. Furthermore, infrared-reflectivity spectra analysis revealed that the primary polarisation contribution was from ionic polarisation. Notably, the optimum microwave dielectric properties of εr = 10.69, Q·f = 49,440 GHz (@ 9.29 GHz), and τf = −30.4 ppm/°C were obtained in CMO ceramics sintered at 700 °C.  相似文献   

10.
Silicon carbide (SiC) ceramics have been fabricated by pressureless liquid phase sintering with Al2O3 and rare-earth oxides (Lu2O3, Er2O3 and CeO2) as sintering additives. The effect was investigated of the different types of rare earth oxides on the mechanical property, thermal conductivity and microstructure of pressureless liquid phase sintered SiC ceramics. The room temperature mechanical properties of the ceramics were affected by the type of rare earth oxides. The high temperature performances of the ceramics were influenced by the triple junction grain boundary phases. With well crystallized triple junction grain boundary phase, the SiC ceramic with Al2O3–Lu2O3 as sintering additive showed good high temperature (1300 °C) performance. With clean SiC grain boundary, the SiC ceramic with Al2O3–CeO2 as sintering additive showed good room temperature thermal conductivity. By using appropriate rare earth oxide, targeted tailoring of the demanding properties of pressureless liquid phase sintered SiC ceramics can be achieved.  相似文献   

11.
《Ceramics International》2022,48(14):20096-20101
A series of Mn2+-doped Mg1-xMnxTa2O6 (x = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12) ceramics were synthesized by solid-state reaction method. The influence of introducing Mn–O bonds as a partial replacement for Mg–O bonds on the lattice and microwave dielectric properties was systematically investigated. XRD and Rietveld refinement confirm that Mn2+ occupies the 2a Wyckoff position and forms a pure trirutile phase. Moreover, based on the chemical bond theory, the dielectric constant is mainly affected by the ionicity of the Ta–O bond. The lattice and dielectric properties remain relatively stable with Mn2+ doping below 0.1, but excessive Mn2+ doping leads to pronounced distortion of the lattice, which is not beneficial for lattice stability and microwave dielectric properties. Introducing an appropriate amount of Mn–O bonds with high bond dissociation energy facilitates MgO6 octahedron stability, which improves the thermal stability of the lattice. Accordingly, the microwave dielectric properties for 0.06 Mn2+-doped MgTa2O6 ceramics were determined: εr = 28, Q × f = 105,000 GHz (at 7.5 GHz), τf = 19.5 ppm/°C.  相似文献   

12.
《Ceramics International》2022,48(14):20245-20250
There has been extensive research on microwave dielectric materials considering their application in 5G and 6G communication technologies. In this study, the sintering temperature range of Mg2TiO4–CeO2 (MT-C) ceramics was broadened using a composite of CeO2 and Mg2TiO4 ceramics, and their microwave dielectric performance was stabilized. Low-loss MT-C composite ceramics were prepared using the solid-phase reaction method, and their microwave dielectric properties, microscopic morphologies, and phase structures were investigated. The proposed MT-C ceramics contained Mg2TiO4 and CeO2 phases; their average grain size was maintained at 2–4 μm in the sintering temperature range of 1275–1425 °C, and the samples were uniformly dense without porosity. The cross-distribution of Mg2TiO4 and CeO2 grains in the samples inhibited the growth of ceramic grains, providing uniform and dense surfaces. The dielectric loss of MT-C ceramics remained constant in the temperature range of 1300–1425 °C at 9 × 10?4 (8.45 ≤ f ≤ 8.75 GHz). As opposed to the base material, MT-C ceramics are advantageous owing to their wide sintering temperature range and the stable microwave dielectric properties, and there are suitable substrate materials for further industrial applications.  相似文献   

13.
《Ceramics International》2020,46(13):21367-21377
In this work, Gd2Hf2O7 ceramics were synthesized and investigated as a potential thermal barrier coating (TBC) material. The phase composition, microstructure and associated thermal properties of Gd2Hf2O7 ceramics were characterized systematically. Results show that the thermal conductivity of Gd2Hf2O7 ceramics is 1.40 Wm−1K−1 at 1200 °C, ~25% lower than that of 8 wt% yttria partially stabilized zirconia (8YSZ). Gd2Hf2O7 ceramics also present large thermal expansion coefficients, which decrease from 12.0 × 10−6 K−1 to 11.3 × 10−6 K−1 (300–1200 °C). Besides, the hot corrosion behaviors of Gd2Hf2O7 ceramics exposed to V2O5 and Na2SO4 + V2O5 salts at temperatures of 900–1200 °C were discussed in great detail. We pay much attention on the corrosion process, corrosion mechanism and corrosion damage of Gd2Hf2O7 ceramics subjected to molten V2O5 and Na2SO4 + V2O5 salts at different temperatures.  相似文献   

14.
The effects of hot-pressing sintering on the phase composition, microstructure, thermal and electrical properties of AlN ceramics with CeO2–CeF3 additives were studied. During hot-pressing sintering, high pressure reduced the grain boundary phase CeAlO3 and decreased the concentration of oxygen in AlN ceramics. The hot-pressing sintered AlN samples had a much higher thermal conductivity of 191.9 W/m·K than pressureless sintered ones because of the great reduction of grain boundary phases and oxygen impurities in AlN ceramic. As the carbon content in hot-pressing sintered sample was very high, carbon contamination led to the decrease in electrical resistivity and changes in polarization mechanisms for AlN ceramics. The relaxation peak in the dielectric temperature spectrum with an activation energy of 0.64 eV for hot-pressing sintered samples was caused by electrons from free carbon at low temperature. Overall, hot-pressing sintering can effectively increase the thermal conductivity and change the electrical properties of AlN ceramics.  相似文献   

15.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

16.
《Ceramics International》2023,49(10):15164-15175
Magnesium aluminate spinel (MgAl2O4) ceramics are high-performance and carbon-free materials widely used in both military and civilian fields. However, it is usually challenging to densify during the solid-state sintering process. The excellent properties of some rare earth oxides have been proved to promote the densification of MgAl2O4 spinel ceramics. But the mechanism of promoting sintering is not clear. In the present work, MgAl2O4 spinel ceramics have been successfully fabricated by co-doping CeO2 and La2O3 via a single-stage solid-state reaction sintering. The effects of addition amounts of CeO2 and La2O3 on phase compositions, microstructures, sintering characteristics, cold compressive strength, and thermal shock resistance of as-prepared MgAl2O4 spinel ceramics were systematically investigated. The results show that by co-doping CeO2 and La2O3 can increase the defect concentration due to the lattice distortion. This could promote the movement of Al3+ and Mg2+ at high temperature, which is beneficial to the formation of more secondary MgAl2O4 spinel. t-ZrO2 with more Ce4+ filling between spinel grains could prevent the growth of grains and promote the densification, besides the new-formed LaAlO3 that was mainly distributed along the grain boundary of the MgAl2O4 phase, both of which were favorable for the formation of dense microstructure of MgAl2O4 spinel materials. At the same time, the formation of more secondary MgAl2O4 spinel and sintering densification also improve the mechanical properties of spinel ceramics. La3+ will segregate to the spinel grain boundary, preventing grain boundary movement and absorbing the main crack's fracture energy. With 3 wt% CeO2 and 3 wt% La2O3 co-doping, the bulk density of the sample increased from 3.02 g∙cm−3 to 3.55 g∙cm−3; the apparent porosity decreased from 12.21% to 9.97%; the cold compressive strength increased from 172.88 MPa to 189.54 MPa; and the residual strength retention ratio after thermal shock increased from 84.92% to 89.15%.  相似文献   

17.
《Ceramics International》2022,48(18):26217-26225
Sr2-2xCa2xCeO4 (x = 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8) ceramics were synthesized through cold isostatic pressing and solid-state reaction. The microstructure, defects, microwave dielectric properties, and the effect of Ca2+ doping of Sr2CeO4 ceramics were systematically investigated. As the sintering temperature increased, the densities of Sr2CeO4 ceramics rose, the content of oxygen vacancies increased, and Ce4+ reduction would be enhanced. In addition, the Sr2CeO4 structure had poor compatibility with Ca2+. The major phase could be kept unchanged only when x ≤ 0.1. The reason was that the doping of Ca2+ intensified the distortion of the CeO6 octahedron and induced the structural transformation of the common edges (Sr2CeO4) to the common angles (SrCeO3). With the increase of dopant, the densities of Sr2-2xCa2xCeO4 ceramics increased significantly, while the content of oxygen vacancies also increased. The microwave dielectric properties were mainly influenced by the density, structural symmetry, defects, and the second phase SrCeO3. The dielectric permittivity (εr) of 13.4–15, the quality factor (Qf) of 118,580–52,170 GHz, and the temperature coefficient of resonant frequency (τf) of ?58.3 ~ ?47.5 ppm/°C were obtained for Sr2-2xCa2xCeO4 ceramics When x ≤ 0.1. This work has provided a foundation for further research on cerate microwave dielectric ceramics.  相似文献   

18.
《Ceramics International》2016,42(9):11003-11009
A low temperature sintering method was used to avoid the relatively high sintering temperatures typically required to prepare 0.67CaTiO3–0.33LaAlO3 (CTLA) ceramics. Additionally, CeO2 was introduced into the CTLA ceramics as an oxygen-storage material to improve their microwave dielectric properties. 0.67CaTiO3–0.33LaAlO3 ceramics co-doped with B2O3–Li2O–Al2O3 and CeO2 were prepared by a conventional two-step solid-state reaction process. The sintering behavior, crystal structure, surface morphology, and microwave dielectric proprieties of the prepared ceramic samples were studied, and the reaction mechanism of CeO2 was elucidated. CTLA+0.05 wt% BLA+3 wt% CeO2 ceramics sintered at 1360 °C for 4 h exhibited the optimal microwave dielectric properties: dielectric constant (εr)=45.02, quality factor (Q×f)=43102 GHz, and temperature coefficient of resonant frequency (τf)=2.1 ppm/°C. The successful preparation of high-performance microwave dielectric ceramics provides a direction for the future development and commercialization of CTLA ceramics.  相似文献   

19.
《Ceramics International》2022,48(3):3578-3584
Porous mullite ceramics are potential advanced thermal insulating materials. Pore structure and purity are the main factors that affect properties of these ceramics. In this study, high performance porous mullite ceramics were prepared via aqueous gel-casting using mullite fibers and kaolin as the raw materials and ρ-Al2O3 as the gelling agent. Effects of addition of mullite fibers on the pore structure and properties were examined. The results indicated that mullite phase in situ formed by kaolin, and ρ-Al2O3 ensured the purity of mullite samples and mullite fibers bonded together to form a nest-like structure, greatly improving the properties of ceramic samples. In particular, the apparent porosity of mullite samples reached 73.6%. In the presence of 75% of mullite fibers, the thermal conductivity was only 0.289 W/m K at room temperature. Moreover, the mullite samples possessed relatively high cold compressive strength in the range of 4.9–9.6 MPa. Therefore, porous mullite ceramics prepared via aqueous gel-casting could be used for wide applications in thermal insulation materials, attributing to the excellent properties such as high cold compressive strength and low thermal conductivity.  相似文献   

20.
Cordierite-bonded porous SiC ceramics were fabricated with and without CeO2 addition in air by an in situ reaction bonding technique. The effects of CeO2 addition on the phase composition, microstructure and properties of porous SiC ceramics were investigated. It was found that the CeO2 addition strongly promotes the phase transformation towards cordierite while inhibits the formation of spinel. With CeO2 addition, the neck growth was enhanced, and the mechanical properties of porous SiC ceramics were improved. When 2.0 wt.% CeO2 was added, a flexural strength of 35.3 MPa was achieved at an open porosity of 42.1%. Pore size distribution characterization by mercury porosimetry indicated that 2.0 wt.% CeO2 addition enlarged the average pore size of porous SiC ceramics and introduced a bigger homogeneity in pore size. In addition, it was found that higher permeability was obtained after adding 2.0 wt.% CeO2. Moreover, the thermal shock resistance of cordierite-bonded porous SiC ceramics was also improved by the addition of CeO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号