首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Ceramics International》2022,48(6):7897-7904
High-performance B4C-PrB6 composites were prepared via hot-pressing sintering with matrix phase B4C and with 2–5 wt% Pr6O11 as additive. The effects of different sintering processes and Pr6O11 content on the microstructure and mechanical properties of the composites were studied in detail. It is found that increasing sintering temperature and pressure will contribute to the densification of B4C-PrB6 composites. Coarse grains are formed in B4C without additives at high temperature conditions, resulting in the decrease of the densification. Pr6O11 can effectively hinder the formation of coarse grains and finally promote the densification of the composites. The main toughening mechanisms of composites was crack deflection. The composites with 4 wt% Pr6O11 prepared at 2050 °C and 25 MPa had the best comprehensive mechanical properties. The relative density, hardness, flexural strength and fracture toughness reached to 98.9%, 37.6 GPa, 339 MPa and 4.4 MP am1/2, respectively.  相似文献   

2.
In this work, CeO2 sintering additive reinforced B4C ceramic composites were prepared by hot-pressing reaction sintering under different processes of low temperature–long holding time (1980°C, 30 MPa, 3 h, 4 wt% CeO2) and high temperature–short holding time (2050°C, 30 MPa, .5 h, 4 wt% and 6 wt% CeO2). The effect of sintering process and CeO2 content on the microstructure and mechanical properties of B4C-CeB6 composites were investigated. The existed impurities in the obtained composites were also analyzed. Results show that CeO2 is an active sintering additive. CeB6 is formed by the reaction between CeO2, B4C and C in sintering process. The densification of B4C ceramics is enhanced, and the grains can be refined by the formed CeB6, which promotes the strength. The thermal expansion coefficient mismatch, crack deflection, and fracture mode change caused by the in situ formed CeB6 improve the toughness. The process of low temperature–long holding time is more suitable for playing the role of CeO2 additive in sintering of B4C, under which condition the relative density, flexural strength, fracture toughness, and hardness reach 99%, 417 MPa, 5.32 MPa·m1/2, and 30.66 GPa, respectively. The impurities in the composites are the kinds of Ti-contained, C-O-Mg-Ca-contained, C-O-Ca-S-contained, and Si-contained impurities.  相似文献   

3.
B4C–NdB6 composites were fabricated by in situ hot pressing at different temperatures (1950–2150°C) with B4C and Nd2O3 (2–4 wt%) as raw materials. The microstructure evolution of the composites with sintering temperature and Nd2O3 content was studied in detail, and the influence of pressure on the sintering of B4C with different contents of Nd2O3 was also investigated. The performance of the fabricated composites was researched and the toughening mechanism was discussed. The results indicate that Nd2O3 can react with B4C to form the thin-sheet intermediate products (Nd(BO2)3, Nd2CO5) first, which then transform to band-shaped NdB6. Pressure can reduce the distance of B4C and Nd2O3, accelerating the mass transfer and contributing to the formation of NdB6. NdB6 and intermediate products are first in agglomerate structure at 1950°C, and then the agglomerates are broken to form dispersive micron and submicron NdB6 at 2000°C by the synergistic function of pressure, diffusion at high temperature, and liquid phase sintering. NdB6 can enhance the densification owing to the bonding function. Excessive Nd2O3 content leads to residual pores, and excessive temperature (2150°C) results in the coarsening of phases. The coexistence of transgranular and intergranular fracture of NdB6 promote the fracture toughness.  相似文献   

4.
《Ceramics International》2022,48(11):15647-15656
The B4C-YB4 composites with good comprehensive properties were prepared by in-situ hot pressing sintering under the conditions of sintering temperature 1950–2050 °C, pressure 20 MPa and holding time 15 min using B4C and Y2O3 as the raw materials. The phase composition, microstructure, mechanical properties of the composites fabricated with different contents of Y2O3 and different temperatures were studied, and the reaction mechanism, toughening and strengthing mechanism were explored. Y2O3 can react with B4C to form YB4, and 15B4C+7Y2O3 = 14YB4+2B2O3+15CO is the total reaction. With the increase of temperature, the mechanical properties of B4C-YB4 composites improve obviously, and the B4C-YB4 composites prepared with 3 wt% Y2O3 have the best performance. The relative density, hardness, flexural strength and fracture toughness of the B4C-YB4 composites fabricated at 2050 °C with 3 wt% Y2O3 are 97.00%, 34.84 GPa, 422.67 MPa and 4.92 MPa m1/2 respectively. The good comprehensive properties are attributed to the uniform distribution and small size of the second phase YB4, and the lower porosity. The coexistence of transgranular and intergranular fracture, and the phenomena such as crack bridging, deflection and microcracks contribute to the improvement of the toughness.  相似文献   

5.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

6.
《Ceramics International》2021,47(23):32675-32684
The B4C-LaB6 composite ceramics were fabricated via hot-pressing sintering at 2050 °C and 20 MPa pressure with the mixture of boron carbide (B4C) and 2–5 wt% lanthanum oxides (La2O3) as raw materials. The effects of additive La2O3 content on the microstructures and mechanical properties of composite ceramics were investigated, and reaction mechanisms of La2O3 and B4C at different temperatures were studied in detail. La2CO5, La3BO6 and LaBO3 were formed by the reactions of La2O3 and B4C at different temperatures, and finally LaB6 was formed below 1600 °C. The comprehensive mechanical properties of B4C-LaB6 composite ceramics were optimized by adding 4 wt% La2O3, the flexural strength, fracture toughness and Vickers hardness reached 350 MPa,4.92 MP am1/2 and 39.08 GPa, respectively. The high densification and flexural strength of composite ceramics achieved in the present study were attributed to LaB6 hindering the movement of grain boundary. However, the densification was reduced caused by CO as La2O3 content increased to 5 wt%. The fast channel was formed via B4C reacting with La2O3, which accelerated migration of B4C in the sintering process. The content of La2O3 played an important role in the fracture mode of the composite ceramics, and ultimately affected the fracture toughness of the composite ceramics.  相似文献   

7.
Fully dense boron carbide-silicon carbide composites were successfully produced by spark plasma sintering method at 1950 °C under 50 MPa applied pressure. The effect of dry and wet mixing methods on uniformity was observed. Density, elastic modulus, microstructure, Vickers hardness and fracture toughness were evaluated. The results showed that dry mixing did not provide uniformity on composites properties. On the other hand wet mixing provided uniformity in microstructure and consistency in material properties. The hardness of the sample containing 50 wt% B4C was measured to be 30.34 GPa hardness value was found at 50 wt% B4C content sample. The increase in the B4C content of the composites decreased the Young's modulus, shear modulus, bulk modulus and fracture toughness. The highest values were found at 10 wt% B4C sample which were 415 GPa (E), 177 GPa (G), 209 GPa (K), and 2.89 MPa m1/2 fracture toughness (KIc).  相似文献   

8.
《Ceramics International》2022,48(13):18811-18820
Boron carbide (B4C) matrix composites had the advantages of high hardness, high melting point and low density. However, due to the low relative density and poor fracture toughness of B4C, its comprehensive properties were limited in engineering applications. In this work, in order to improve the comprehensive properties of B4C composites, B4C–SiC–SiB6–CeB6 composites were designed and fabricated via reactive hot pressing at 2050 °C and 20 MPa with B4C matrix and novel additives (Double doping of Si and CeO2) as raw materials. The effects of additive CeO2 content on the microstructures and mechanical properties of composite were investigated, and reaction mechanisms of B4C, Si and CeO2 at different temperatures were studied in detail. The work showed that liquid phase Si and SiB6 greatly improved the densification of composites. CeB6 played an indispensable role in the formation of SiC–SiB6 agglomerate structure, increasing strength and supplementing toughness. When the content of CeO2 was 6 wt%, the relative density, hardness, flexural strength and fracture toughness reached to 99.7%, 34.9 GPa, 461.46 MPa and 5.57 MPa m1/2, respectively. Our strategy benefited from the formation of two liquid phases and SiC–SiB6 agglomerate structure, showing great potential in promoting sintering and improving fracture toughness.  相似文献   

9.
Spark plasma sintering (SPS) is an advanced sintering technique because of its fast sintering speed and short dwelling time. In this study, TiB2, Y2O3, Al2O3, and different contents of B4C were used as the raw materials to synthesize TiB2-B4C composites ceramics at 1850°C under a uniaxial loading of 48 MPa for 10 min via SPS in vacuum. The influence of different B4C content on the microstructure and mechanical properties of TiB2-B4C composites ceramics are explored. The experimental results show that TiB2-B4C composite ceramic achieves relatively good comprehensive properties and exceptionally excellent flexural strength when the addition amount of B4C reaches 10 wt.%. Its relative density, Vickers hardness, fracture toughness, and flexural strength reach to 99.20%, 24.65 ± .66 GPa, 3.16 MPa·m1/2, 730.65 ± 74.11 MPa, respectively.  相似文献   

10.
The hot pressing process of monolithic Al2O3 and Al2O3-SiC composites with 0-25 wt% of submicrometer silicon carbide was done in this paper. The presence of SiC particles prohibited the grain growth of the Al2O3 matrix during sintering at the temperatures of 1450°C and 1550°C for 1 h and under the pressure of 30 MPa in vacuum. The effect of SiC reinforcement on the mechanical properties of composite specimens like fracture toughness, flexural strength, and hardness was discussed. The results showed that the maximum values of fracture toughness (5.9 ± 0.5 MPa.m1/2) and hardness (20.8 ± 0.4 GPa) were obtained for the Al2O3-5 wt% SiC composite specimens. The significant improvement in fracture toughness of composite specimens in comparison with the monolithic alumina (3.1 ± 0.4 MPa.m1/2) could be attributed to crack deflection as one of the toughening mechanisms with regard to the presence of SiC particles. In addition, the flexural strength was improved by increasing SiC value up to 25 wt% and reached 395 ± 1.4 MPa. The scanning electron microscopy (SEM) observations verified that the increasing of flexural strength was related to the fine-grained microstructure.  相似文献   

11.
《Ceramics International》2021,47(18):25895-25900
In this study, TiB2–B4C composite ceramics were prepared using Y2O3 and Al2O3 as the sintering aids. Different contents of B4C were added to seek promoted comprehensive mechanical properties of the composites. The mixed powders were sintered at 1850 °C under a uniaxial loading of 30 MPa for 2 h via hot-pressing. Through the measurement of XRD, SEM and related mechanical properties, the influence of B4C content on the microstructure and mechanical properties of TiB2–B4C composites ceramics was discussed. The experimental results show that TiB2–B4C composite ceramics exhibit excellent mechanical properties, which can be attributed to the dense microstructure and fine grain size. In addition, TiB2–B4C composite ceramic shows a relatively high comprehensive properties when the addition amount of B4C is 20 wt%. The relative density, Vickers hardness, fracture toughness and flexural strength are measured to be 99.61%, 27.63 ± 1.73 GPa, 4.77 ± 0.06 MPa m1/2, 612.5 ± 28.78 MPa, respectively.  相似文献   

12.
B4C-SiC composites with fine grains were fabricated with hot-pressing pyrolyzed mixtures of polycarbosilane-coated B4C powder without or with the addition of Si at 1950 °C for 1 h under the pressure of 30 MPa. SiC derived from PCS promoted the densification of B4C effectively and enhanced the fracture toughness of the composites. The sinterability and mechanical properties of the composites could be further improved by the addition of Si due to the formation of liquid Si and the elimination of free carbon during sintering. The relative density, Vickers hardness and fracture toughness of the composites prepared with PCS and 8 wt% Si reached 99.1%, 33.5 GPa, and 5.57 MPa m1/2, respectively. A number of layered structures and dislocations were observed in the B4C-SiC composites. The complicated microstructure and crack bridging by homogeneously dispersed SiC grains as well as crack deflection by SiC nanoparticles may be responsible for the improvement in toughness.  相似文献   

13.
In this study, the high-content SiCnw reinforced SiC ceramic matrix composites (SiCnw/SiC CMC) were successfully fabricated by hot pressing β-SiC and sintering additive (Al2O3-Y2O3) with boron nitride interphase modification SiCnw. The effects of sintering additive content and mass fraction (5–25 wt%) of SiCnw on the density, microstructure, and mechanical properties of the composites were investigated. The results showed that with the increase of sintering additives from 10 wt% to 12 wt%, the relative density of the SiCnw/SiC CMC increased from 97.3% to 98.9%, attributed to the generated Y3Al5O12 (YAG) liquid phase from the Al2O3-Y2O3 that promotes the rearrangement and migration of SiC grains. The comprehensive performance of the obtained composite with 15 wt% SiCnw possessed the optimal flexural strength and fracture toughness of 524 ± 30.24 MPa and 12.39 ± 0.49 MPa·m1/2, respectively. Besides, the fracture mode of the composites with 25 wt% SiCnw content revealed a pseudo-plastic fracture behavior. It concludes that the 25 wt% SiCnw/SiC CMC was toughened by the fiber pull-outs, debonding, bridging, and crack deflection that can consume plenty of fracture energy. The strategy of SiC nanowires worked as a main bearing phase for the fabrication of SiC/SiC CMC providing critical information for understanding the mechanical behavior of high toughness and high strength SiC nanoceramic matrix composites.  相似文献   

14.
Almost fully-dense B4C–SiC–TiB2 composites with a high combination of strength and toughness were prepared through in situ reactive spark plasma sintering using B4C and TiSi2 as raw materials. The densification, microstructure, mechanical properties, reaction, and toughening mechanisms were explored. TiSi2 was confirmed as a reactive sintering additive to promote densification via transient liquid-phase sintering. Specifically, Si formed via the reaction between B4C and TiSi2 that served as a transient component contributed to densification when it melted and then reacted with C to yield more SiC. Toughening mechanisms, including crack deflection, branching and bridging, could be observed due to the residual stresses induced by the thermoelastic mismatches. Particularly, the introduced SiC–TiB2 agglomerates composed of interlocked SiC and TiB2 played a critical role in improving toughness. Accordingly, the B4C–SiC–TiB2 composite created with B4C-16 wt% TiSi2 achieved excellent mechanical performance, containing a Vickers hardness of 33.5 GPa, a flexural strength of 608.7 MPa and a fracture toughness of 6.43 MPa m1/2.  相似文献   

15.
Ceramic cutting tools have been developed as a technological alternative to cemented carbides in order to improve cutting speeds and productivity. Al2O3 reinforced with refractory carbides improve fracture toughness and hardness to values appropriate for cutting applications. Al2O3–NbC composites were either pressureless sintered or hot-pressed without sintering additives. NbC contents ranged from 5 to 30 wt%. Particle dispersion limited the grain growth of Al2O3 as a result of the pinning effect. Pressureless sintering resulted in hardness values of approximately 13 GPa and fracture toughness around 3.6 MPa m1/2. Hot-pressing improved both hardness and fracture toughness of the material to 19.7 GPa and 4.5 MPa m1/2, respectively.  相似文献   

16.
B4C composites toughened by MoB2/Mo2B5-SiC interlocking structure were prepared via reactive hot pressing with B4C and MoSi2 as raw materials. The phase composition, microstructure, and mechanical properties of the fabricated B4C composites were studied. The crack propagation and fracture surface were observed, and the toughening mechanism was analyzed. The results indicate that the interlocking structure of MoB2/Mo2B5-SiC is formed in the obtained B4C composites. The relative density, flexural strength, and fracture toughness of the B4C composites reach 99.3%, 480 MPa, and 5.2 MPa·m1/2, respectively, when the MoSi2 content is 30 wt%. The hardness is 33 GPa when the MoSi2 content is 20 wt%. The special laminar fracture of the interlocking structure of MoB2/Mo2B5-SiC elongates the crack extending path and thus consumes more energy of crack extension. The phenomena of crack bridging and branching and the special laminar fracture of the interlocking structure have a synergistic effect on promoting the overall fracture toughness.  相似文献   

17.
Alumina is an engineering ceramic material with excellent comprehensive properties as well as the inherent shortcoming of the low fracture toughness. Y2O3-stabilized t-ZrO2 (TZP) is an effective additive to improve its fracture toughness. In this work, rotary chemical vapor deposition (RCVD) was applied to uniformly coat TZP nanoparticles on α-Al2O3 powder, and then the powder was compacted via spark plasma sintering. The content of TZP increased from 0.56 to 4.7 wt% with increasing the deposition temperature from 500 to 800 °C but decreased at 900 °C. The RCVD-TZP nanoparticles homogeneously surrounded the α-Al2O3 grains and inhibited its growth after sintering. The relative density, fracture toughness and hardness of the ZTA composites had the maximum values of 99.2%, 7.28 ± 0.33 MPa m1/2, and 19.5 ± 0.5 GPa at 1500 °C and 4.7 wt% RCVD-TZP, respectively, much higher than the ZTA composites directly mixed with TZP commercial powder.  相似文献   

18.
Square-shaped monolithic B4C and B4C-ZrB2 composites were produced by spark plasma sintering (SPS) method to investigate the effect of 5, 10, 15 vol% ZrB2 addition on the densification, mechanical and microstructural properties of boron carbide. The relative density of B4C increased with the increasing volume fraction of ZrB2 and density differences in different regions of the sample narrowed down. Homogeneous density distribution and microstructure were accomplished with the increasing holding time from 7 to 20 min for the B4C-15 vol% ZrB2 composites, and the highest overall relative density was achieved as 99.23%. The hardness and fracture toughness of composites were enhanced with the addition of ZrB2 compared to monolithic B4C. The enhancement in fracture toughness was observed due to the crack deflection, crack bridging and crack branching mechanisms. The B4C-15 vol% ZrB2 composite exhibited the combination of superior properties (hardness of 33.08 GPa, Vickers indentation fracture toughness of 3.82 MPa.m1/2).  相似文献   

19.
《Ceramics International》2020,46(17):26511-26520
Boron carbide (B4C) hybrids with different contents of graphene oxide (GO) were prepared by a heterogeneous co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as the cationic surfactant. The as-obtained mixtures were further hot-pressed at 1950 °C for 60 min under 30 MPa, by which B4C–reduced GO (rGO) composites were fabricated. It was found that the addition of only 0.5 wt% rGO could alter the predominance of trans-granular fracture in monolithic B4C ceramic material to mixed trans-granular and inter-granular modes in B4C–rGO composites. The flexural strength and fracture toughness of the B4C–2 wt% rGO were increased by 31% (from 350 to 455 MPa) and 83% (from 3.20 to 5.85 MPa·m1/2), respectively, compared with those of pure B4C. The improved mechanical properties are attributed to the mechanisms of pull-out and bridging of rGO and crack deflection, as evidenced by microstructural observations. The energy dissipation in the present B4C–rGO composites was further verified using two micromechanical models.  相似文献   

20.
We investigated the Vickers hardness and fracture toughness of an Al2O3(n) + 70 wt% ZrO2 (TZ‐3Y)n nanocomposite with addition of 2.5 wt% Al2O3 whiskers. Densities greater than 95% were reached after conventional sintering at 1500°C. The fracture toughness was increased 62% over pure Al2O3. Microcracking and crack deflection can be the mechanisms responsible to improve the fracture toughness. The use of ATZ composites with a low percent of whiskers can be a promising biomedical material for medical and dental applications given its large increase in fracture toughness over pure alumina and the observed relief from aging issues of zirconia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号