首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SnO2 doped Sr0.6(Na0.5Bi0.5)0.4TiO3 (NBT-ST) ceramics were prepared by a conventional solid-state reaction method. Their phase structures, microstructures and electrical properties were characterized in details. It is found that SnO2 doping could increase the lattice parameters, density and average grain size. A suitable amount of SnO2 can improve dielectric properties, and affect the relaxor behavior of the NBT-ST matrix, thereby it can effectively reduce the energy loss and optimize the energy storage performance. Furthermore, the energy storage properties are improved with SnO2 doping. Especially, the 1 at. % SnO2 doped NBT-ST achieves a high recoverable energy density of 2.35 J/cm3, which is mainly attributed to large maximum polarization of 43.2 μC/cm2, small remnant polarization of 5.83 μC/cm2 and high breakdown strength of 180 kV/cm. Also, relatively good temperature stability for dielectric performance and excellent fatigue resistance are observed in this composition. These properties are attractive for lead-free energy storage applications.  相似文献   

2.
《Ceramics International》2020,46(10):15907-15914
Bismuth layer-structured BaBi2Nb2O9 (BBN) and BaBi2Ta2O9 (BBT) relaxor ferroelectric ceramics were explored as potential energy storage materials. Remarkable energy storage performances were obtained in both BBN and BBT ceramics, featured by large recoverable energy storage density (~0.84 J/cm3 and ~0.68 J/cm3) and high energy storage efficiency (~90% and ~94%), respectively. Furthermore, both the two ceramics exhibit good thermal and frequency stabilities. Delightedly, both the BBN and BBT ceramics can complete the discharge process within 0.15 μs, resulting in ultrahigh current density of 195 A/cm2 and 234 A/cm2 and excellent power density of 10.74 MW/cm3 and 12.89 MW/cm3, respectively. The obtained results suggest that BaBi2Nb2O9 and BaBi2Ta2O9 ceramics could have a promising future in energy storage applications. This study also demonstrates that the bismuth layer-structured relaxor ferroelectric ceramic can be considered as a novel potential lead-free energy storage materials, in addition to the widely studied pervoskite-structured relaxor ferroelectric ceramics.  相似文献   

3.
《Ceramics International》2021,47(23):32794-32803
Na0.5Bi0.5TiO3-based ceramic specimens have been extensively investigated as ferroelectric materials. After being doped with CaTiO3, the resulting Na0.5Bi0.5TiO3-based ceramics exhibit relaxor characteristics, and improved energy storage density and efficiency. Based on these above results, CeO2 was further employed to modify the polarization of the 0.85Na0.5Bi0.5TiO3-0.15CaTiO3 matrix ceramic to achieve better energy storage performance. The effective energy storage density was enhanced from 1.93 to 2.53 J/cm3 by using the appropriate doping concentration of CeO2. Grain refinement effect can effectively enhance the electric-field strength from approximately 190 to 230 kV/cm. In particular, when doped with 2% CeO2, the energy storage efficiency of the sample was maintained at approximately 90% at 30 °C-150 °C and at approximately 80% in the frequency range of 0.2–200 Hz. This combination has very excellent temperature stability and frequency stability, making it a promising candidate for energy storage applications.  相似文献   

4.
Novel lead-free diphasic (1-x)Ba0.9Sr0.1Ti0.9Hf0.1O3-xNa0.5Bi0.5TiO3 (BSTH-NBT) ceramic nanocomposites were synthesized via an economically viable modified mechano-chemical activation technique. In the present investigation, we have developed an energy storage composite material by systematically optimizing the charge transport behavior and charge storage characteristics between the ferroelectric BSTH and piezoelectric NBT phase. The composite with x = 0.09 NBT concentration has shown the best energy storage properties with 1.61 J/cm3 discharge energy density along with 80.1% energy efficiency. The BSTH and NBT had a synergetic effect on the ferroelectric properties of the composites. The improvement in ferroelectric and piezoelectric properties along with excellent aging characteristics in composite materials is mainly attributed to enhancement in microstructural density, grain boundary interface, and stress effects. The improved dispersibility and excellent compatibility between BSTH and NBT phase have resulted in approximately 20% enhancement in breakdown strength of composite compared to pure BSTH ceramic.  相似文献   

5.
《Ceramics International》2023,49(19):31152-31162
There is still a problem of low energy storage density in dielectric capacitors which is a core component of power systems. For the improvement of the energy storage density, the linear dielectric material CaTiO3 (CT) was introduced in Na0.5Bi0.5TiO3 (NBT) ceramics in this paper. By modifying the A site, a new relaxor ferroelectric ceramic was successfully synthesized and attained a recoverable density (Wrec) of 2.34 J/cm3 at x = 0.18. Moreover, the preparation process was optimized in this paper. Through the viscous polymer process (VPP) route, the energy density (WA) of 82NBT-18CTVPP ceramic further reaches 6.45 J/cm3 at 340 kV/cm, with efficiency (η) up to 75% and a Wrec of 4.82 J/cm3. At the same time, the change of Wrec is small at temperature (30–150 °C) and frequency (1 Hz–300 Hz), which demonstrates its excellent stability. The discharge power density reaches about 180 MW/cm3 and the discharge time is 0.117 μs, which indicates its excellent pulse discharge performance. The results show that 82NBT-18CT lead-free relaxation ferroelectric material is expected to become ideal for high-energy storage applications.  相似文献   

6.
Dielectric ceramics with both excellent energy storage and optical transmittance have attracted much attention in recent years. However, the transparent Pb-free energy-storage ceramics were rare reported. In this work, we prepared transparent relaxor ferroelectric ceramics (1 − x)Bi0.5Na0.5TiO3xNaNbO3 (BNT–xNN) by conventional solid-state reaction method. We find the NN-doping can enhance the polarization and breakdown strength of BNT by suppressing the grain growth and restrained the reduction of Ti4+ to Ti3+. As a result, a high recoverable energy-storage density of 5.14 J/cm3 and its energy efficiency of 79.65% are achieved in BNT–0.5NN ceramic at 286 kV/cm. Furthermore, NN-doping can promote the densification to improve the optical transmittance of BNT, rising from ∼26% (x = 0.2) to ∼32% (x = 0.5) in the visible light region. These characteristics demonstrate the potential application of BNT–xNN as transparent energy-storage dielectric ceramics.  相似文献   

7.
Ferroelectric (1-x)Sr0.875Pb0.125TiO3-xBi(Mg0.5Zr0.5)O3 ((1-x)SPT-xBMZ, x = 0-0.2) ceramics with high discharge efficiency and power density were synthesized via a conventional solid-state sintering method. The prepared (1-x)SPT-xBMZ ceramics were detected as a pure perovskite structure and a dense microstructure, and a typical relaxor behavior and an excellent temperature stability were also observed. Although there is no direct correlation between the degree of diffuseness and the maximum polarization, the high degree of diffuseness can reduce the remanent polarization and significantly improve energy storage and release characteristics of ferroelectric ceramics. Based on a polarization electric-field loop measurement, a recoverable energy storage density of 0.762 J/cm3 and a very high efficiency of 96.34% are achieved when x = 0.2 under 150 kV/cm. The energy storage properties of 0.8SPT-0.2BMZ ceramic exhibit good temperature stability (25−130 °C) and frequency stability (2−80 Hz). In a practical charge-discharge circuit testing, a short discharge pulse-period about 94 ns, a high discharge energy density of 1.7 J/cm3 and an ultra-high-power density of 62.8 MW/cm3 are obtained for the 0.8SPT-0.2BMZ ceramic at 240 kV/cm. The results indicate that the 0.8SPT-0.2BMZ ceramic is a promising dielectric material for high-power pulse capacitors.  相似文献   

8.
A new type of (0.7?x)Bi0.5Na0.5TiO3‐0.3Sr0.7Bi0.2TiO3xLaTi0.5Mg0.5O3 (LTM1000x,= 0.0, 0.005, 0.01, 0.03, 0.05 wt%) lead‐free energy storage ceramic material was prepared by a combining ternary perovskite compounds, and the phase transition, dielectric, and energy storage characteristics were analyzed. It was found that the ceramic materials can achieve a stable dielectric property with a large dielectric constant in a wide temperature range with proper doping. The dielectric constant was stable at 2170 ± 15% in the temperature range of 35‐363°C at LTM05. In addition, the storage energy density was greatly improved to 1.32 J/cm3 with a high‐energy storage efficiency of 75% at the composition. More importantly, the energy storage density exhibited good temperature stability in the measurement range, which was maintained within 5% in the temperature range of 30‐110°C. Particularly, LTM05 show excellent fatigue resistance within 106 fatigue cycles. The results show that the ceramic material is a promising material for temperature‐stable energy storage.  相似文献   

9.
《Ceramics International》2020,46(11):18800-18812
CuO doped Ba0.8Sr0.1Ca0.1Ti0.95Zr0.05O3 (BSCTZ) ceramics were prepared by a modified mechano-chemical activation technique with the aim of improving energy storage properties for ceramic capacitor applications. CuO can effectively improve the microstructural characteristics along with a transformation of BSCTZ from classical ferroelectric to relaxor, which is the prime requirement for obtaining high discharge energy density and energy efficiency. The effect of CuO doping on the microstructural, ferroelectric, dielectric, and piezoelectric properties have been systematically studied. The study reveals that an appropriate amount of CuO doping can significantly enhance the morphological properties along with improvement in material density, which is very beneficial in a material for attaining improved energy storage performance. The BSCTZ sample with 3 mol% CuO doping has shown a highly dense microstructure, high saturation polarization (33.01 μC/cm2), low remnant polarization (6.74 μC/cm2), ultrahigh discharge energy density (1.81 J/cm3) and high energy efficiency (81.9%). The CuO doping in BSCTZ has also led to a slight improvement in breakdown strength and electromechanical properties compared to pure BSCTZ ceramics, which is mainly attributed to excellent density and optimum grain size of the material.  相似文献   

10.
Lead-free (1-x)BiFeO3-x(0.85BaTiO3-0.15Bi(Sn0.5Zn0.5)O3) [(1-x)BF-x(BT-BSZ), x=0.45-0.7] ceramic samples were prepared by solid phase sintering. It is revealed that the pure single-phase perovskite structure can be obtained in samples with x ≥ 0.6. With increasing x, the measured ferroelectric hysteresis loop becomes gradually slimmed in accompanying with reduced remnant polarization, and a clear ferroelectric-relaxor transition at x = 0.65 is identified. Furthermore, the measured electric breakdown strength can be significantly enhanced with increasing x, and the optimal energy storage performance is achieved at x = 0.65, characterized by the recoverable energy storage density up to ≈3.06 J/cm3 and energy storage efficiency as high as ≈92 %. Excellent temperature stability (25°C–110°C) and fatigue endurance (>105 cycles) for energy storage are demonstrated. Our results suggest that the BF-based relaxor ceramics can be tailored for promising applications in high energy storage devices.  相似文献   

11.
《Ceramics International》2020,46(5):6108-6114
In this work, a new (Sr0.7Ba0.3)5LaNb7Ti3O30 system ceramic with a filled tetragonal tungsten bronze structure was proposed and fabricated by the traditional solid phase method. Crystal structure, relaxor behaviors and energy storage capabilities were studied. Large relaxor activation energy indicates a “weakly coupled relaxor” mechanism, which is advantageous for obtaining better energy storage performance, and lower conductance activation energy can further prove the formation of the filled tungsten bronze structure. More importantly, a dielectric breakdown strength of up to 35.5 kV/mm was obtained. The releasable energy density and efficiency at 24 kV/mm are 1.36J/cm3 and 91.9%, respectively. In addition, due to the high current density and high dielectric breakdown strength, a current density of 477.5 A/cm2 and a power density of 42.9 MW/cm3 are achieved, meaning that SBLNT ceramic is a potential candidate dielectric ceramic for energy storage.  相似文献   

12.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

13.
《Ceramics International》2023,49(20):32510-32520
Eco-friendly lead-free energy-storage ceramics featuring high energy storage properties and ultra-high stability have been regarded to be one of the most potential materials in the field of energy storage. In this work, a new element system, (1-x)(0.6Bi0.5Na0.5TiO3-0.4SrTiO3)-xBi[Zn2/3(Nb0.5Ta0.5)1/3]O3 ((1-x)BNST-xBZNT) lead-free ceramics, were synthesized via a conventional solid-state sintering technology. And the phase structure, microstructure and energy storage properties of the (1-x)BNST-xBZNT ceramics were comprehensively studied. After the introduction of BZNT, the average grain size of the materials is greatly decreased, thereby enhancing the dielectric breakdown strength (DBS). Additionally, the thermal stability of the ceramics is significantly improved via regulating the doping content and sintering temperature. Furthermore, the ferroelectric long-range order of the ceramics is decomposed into randomly-oriented polar nano-domains (PNRs) after introducing BZNT, leading to strong relaxor behavior and significantly reducing remanent polarization (Pr). As a result, even under a relatively low electric field of 139 kV/cm, the 0.98BNST-0.02BZNT ceramic sintered at 1150 °C possesses high values of energy storage efficiency (η) value of 92.78% and total energy storage density (Wtot) of 1.67 J/cm3 as well as remarkable thermal stability (25–175 °C), frequency stability (20–70 Hz) and fatigue resistant stability (100-105 cycles). This investigation provides a useful reference for developing advanced energy storage ceramics by regulating the doping content and sintering temperature.  相似文献   

14.
A series of (1-x)(0.65BaTiO3-0.35Bi0.5Na0.5TiO3)-xNa0.73Bi0.09NbO3 ((1-x)BBNT-xNBN) (x = 0–0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The microstructure, dielectric property, relaxor behavior and energy storage property were systematically investigated. X-ray diffraction results reveal a pure perovskite structure and dielectric measurements exhibit a relaxor behavior for the (1-x)BBNT-xNBN ceramics. The slim polarization electric field (P-E) loops were observed in the samples with x  0.02 and the addition of Na0.73Bi0.09NbO3 (NBN) could decrease the remnant polarization (Pr) of the (1-x)BBNT-xNBN ceramics obviously. The sample with x = 0.08 exhibits the highest energy storage density of 1.70 J/cm3 and the energy storage efficiency of 82% at 172 kV/cm owing to its submicron grain size and high relative density. These results show that the (1-x)BBNT-xNBN ceramics may be promising lead-free materials for high energy storage density capacitors.  相似文献   

15.
《Ceramics International》2022,48(15):21061-21070
(1-x) (0.98Na0.5Bi0.5TiO3–0.01BaTiO3–0.01BiFeO3)–xCaTiO3 (NBB-xCT) ceramics were produced using traditional solid-state synthesis methods. The surface morphology, domain structure, and electrical properties of the ceramic samples were systematically studied. In addition, the temperature and frequency stabilities of the NBB-15CT sample at 200 kV/cm were tested. Generally, NBB-xCT ceramics exhibit a typical single perovskite phase structure. The results indicate that the NBB-15CT ceramics showed a high energy density of 3.14 J/cm3 at 250 kV/cm. The piezoresponse force microscopy (PFM) results showed that the addition of CT broke the macrodomains of the 0.98Na0.5Bi0.5TiO3-0.01BaTiO3-0.01BiFeO3 ceramic and helped to form nanodomains, leading to an improved energy storage performance. The above performance indicates that the specimens possess very good temperature-and frequency-dependent energy storage performances at 30–150 °C and 1–100 Hz. Moreover, the electric energy storage and release in the NBB-15CT ceramic indicated that the power density could reach 55.30 MV/cm3 at 180 kV/cm. Therefore, the NBB-15CT ceramic is a promising material for electrical capacitors.  相似文献   

16.
With growing concerns over environmental protection, lead-free dielectric ceramic capacitors are attracting much attention. In this work, a series of novel (1-x) Na0.5Bi0.5TiO3-x Ba5LaTi3Ta7O30 ((1-x)NBT-xBLTT) dielectric composite ceramics were fabricated by a traditional solid‐state method. All the samples possess a compact microstructure with refined grain morphology with increasing BLTT content, and tend to exhibit a diphase dielectric composite as x reaches up to 0.05. Furthermore, the addition of BLTT enhances the dielectric relaxor behavior of NBT-based ceramics, such that the x = 0.15 composite ceramic exhibits a typical feature of relaxor ferroelectrics. As a result, a high recoverable energy-storage density of Wrec~3.67 J/cm3, an ultrahigh energy-storage efficiency of η~97.3%, and a high power density of PD~333 MW/cm3 can be simultaneously obtained in the x = 0.15 relaxor composite ceramic. This study provides an alternative way to design excellent energy-storage performances in NBT-based compositions through constructing dielectric relaxor composites via introducing non-polar tungsten bronze oxides.  相似文献   

17.
A novel strategy of enhancing the dielectric and energy storage properties of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) ceramics by introducing a K0.5Na0.5NbO3 (KNN) ferroelectric phase is proposed herein, and its underlying mechanism is elucidated. The lead-free KNN ceramic decreases the residual polarisation and increases the electric breakdown strength of the NBT–BT matrix through the simultaneous modification of its A-sites and B-sites. The obtained NBT?BT?x?KNN ceramics have a perovskite structure with unifying grains. A bulk 0.9NBT–BT–0.1KNN ceramic sample with a thickness of 0.2 mm possesses a high energy storage density of 2.81 J/cm3 at an applied electric field of 180 kV/cm. Moreover, it exhibits good insulation properties and undergoes rapid charge and discharge processes. Therefore, the obtained 0.9NBT–BT–0.1KNN ceramic can be potentially used in high-power applications because of its high energy density, good insulation properties, and large discharge rate.  相似文献   

18.
Lead-free antiferroelectric (AFE) ceramic materials have attached increasing attention in application of high-power capacitors for the past few years, due to their high energy storage density and environmental protection. However, the related applications are seriously restricted because of the limited number of environment friendly AFE candidate materials, high cost and low energy storage efficiency. In this work, the A-site ion Sm3+ doped 0.88NaNbO3-0.12Sr0·7Bi0·2TiO3 lead-free AFE P phase ceramics (0.88Na1-3xSmxNbO3-0.12Sr0·7Bi0·2TiO3, abbreviated as NN-SBT-100xSm) were prepared and characterized. With the increase of Sm doping amount, a relaxor-like behavior was found in the dielectric-temperature curves of NN-SBT-100xSm, indicating the AFE orthorhombic P phase is gradually replaced by an AFE orthorhombic R phase. As a result, double-like and slim P-E curve with near-zero residual polarization and suppressed hysteresis loss was obtained at x > 0.01. More encouragingly, a good discharge energy storage density (Wrec = 3.58 J/cm3) and a high efficiency (η = 82%) at a low electric field (E = 200 kV/cm) has been recorded simultaneously for NN-SBT-2Sm relaxor AFE ceramic, which are better than the other lead-free energy storage ceramics under the same E. In addition, the energy storage properties of NN-SBT-2Sm ceramics exhibit outstanding temperature and frequency stability. These results indicate that NN-SBT-2Sm relaxor AFE ceramic has a great practical value in pulse power capacitors.  相似文献   

19.
BiFeO3-BaTiO3-based relaxor ferroelectric ceramic has attracted increasing attention for energy storage applications. However, simultaneously achieving high recoverable energy storage density (Wrec) and efficiency (η) under low electric field has been a longstanding drawback for their practical applications. Herein, a novel relaxor ferroelectric material was designed by introducing (Sr0.7Bi0.2)TiO3 (SBT) into the composition 0.67BiFeO3-0.33BaTiO3 (BF-BT-xSBT). A large Wrec of ∼2.40 J/cm3 and a high η of ∼90.4 % were simultaneously realized under a low electric field of 180 kV/cm, which is superior to that of most previously reported lead-free ceramics. Moreover, moderate temperature endurance and excellent frequency stability were also obtained. More importantly, this ceramic has a large discharge current density (∼289.18 A/cm2), a discharge power density (∼14.46 MW/cm3) and short discharge time (<0.25 μs). These results not only demonstrate superior potential in BF-BT-SBT ceramics, but also offer a new design to tune the energy storage performance of lead-free relaxor ferroelectric ceramics.  相似文献   

20.
Antiferroelectric (AFE) ceramic materials possess ultrahigh energy storage density due to their unique double hysteresis characteristics, and PbZrO3 is one of the promising systems, but previous materials still suffer from the problem that energy storage density and energy storage efficiency can hardly be improved synergistically. In this work, a multiple optimization strategy is proposed to substantially improve the energy storage efficiency while maintaining the high energy storage density of PZ-based AFE ceramics. Sr2+-doped (Pb0.90La0.02Sr0.08)[(Zr0.5Sn0.5)0.9Ti0.1]0.995O3 ceramics was successfully synthesized by viscous polymer process and two-step sintering. The diffuse phase transition constructed in this ceramic depleted the threshold electric field hysteresis and current while the breakdown field strength was increased again. An ultrahigh recoverable energy density (Wrec) of 7.9 J/cm3 with a high energy storage efficiency (η) of 96.4 % are achieved synchronously at an electric field of 510 kV/cm. Moreover, the AFE ceramics possess remarkable discharge energy storage properties with a high discharge energy density (Wd) of 7.4 J/cm3 and a large power density (Pd) of 224 MW/cm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号