首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
煤炭自然发火早期预报是矿井防灭火工作的基础,由于直接测温判定法具有一定的局限性,因此可通过指标性气体来分析确定煤的自燃程度。以田陈煤矿煤样作为研究对象,利用煤炭自燃特性测试仪分别进行了恒温定风量、恒温变风量以及升温条件下的煤层氧化自燃模拟试验,并对试验结果进行了分析,最终确定了煤层自燃指标气体及其浓度标准,为该矿煤层自燃预测预报提供了理论基础。  相似文献   

2.
通过对同煤集团华盛虎峰煤业所采2#煤层煤样进行热重分析实验和程序升温氧化实验研究,确定了2#煤层自燃过程中各阶段的特征温度,得出升温氧化过程中各气体浓度随温度变化的规律,确定了以CO为主,C2H4、H2、C2H2为辅的煤层自燃指标气体预测预报体系,将特征温度与指标气体进行关联性分析,对煤自燃过程有了更深入地认识,掌握了虎峰煤业2#煤层自然发火宏观特性,为该矿煤自燃防治提供了科学依据。  相似文献   

3.
随着温度的升高,煤炭自燃将依次出现不同的气体.这些气体的出现及释放量基本能准确反映煤炭氧化自燃程度.在煤层程序升温实验装置基础上,结合煤自燃发火实验台模拟的结果,确定太原东山煤矿煤层自燃预报的指标气体及其对应的温度范围,为该矿煤自燃预测预报及防治提供可操作性的依据.  相似文献   

4.
盘道煤矿煤层为容易自燃煤层,在开采过程中受采空区、煤柱等区域自然发火的影响,严重威胁着该矿的安全生产。论文分析了该矿自然发火标志气体的确定和评价标准,采用束管取样监测系统的测点布置和利用煤矿专用气相色谱仪对煤层自然发火高危地点进行气体分析,从而达到对自然发火的预测预报。  相似文献   

5.
《煤炭技术》2015,(10):155-158
以沙坪煤矿10#煤层煤样为研究对象,根据国家相关标准进行煤样基础参数测试,建立煤层自燃预测预报技术体系基础数据。利用程序升温氧化实验考察煤样在不同温度下气体产物的生成变化规律,优选出各煤层煤样自燃发火标志气体,并确定煤自燃过程中耗氧速率、CO产生速率、CO2产生速率、临界温度、动力学参数,形成体系并指导现场煤炭自燃早期预测预报工作。  相似文献   

6.
枣泉矿2#煤层自然发火特性实验研究   总被引:2,自引:2,他引:0  
利用大型煤低温自然发火实验台,对枣泉矿2#煤层煤样自燃特性参数进行了测定,确定了煤的最短自然发火期、临界温度、干裂温度、指标气体产生率、氧化放热强度和自燃极限参数,为枣泉矿自燃火灾的预测预报及防治提供了参考依据.  相似文献   

7.
《煤炭技术》2017,(6):189-190
为预防新集二矿11煤层发生煤炭自燃引发火灾,选取11煤层工作面和机巷掘进头处煤样,利用实验室煤低温氧化装置研究该煤层煤自然发火产生气体成分的变化规律,优选出煤自然发火指标气体,分析煤体温度与指标气体含量间的定量关系,用于该煤层自燃预测预报研究。  相似文献   

8.
主要检测了榆阳煤矿3#煤层煤样的工业分析和自燃倾向性,通过程序升温法研究了煤样在不断升温过程中各种指标气体的变化情况,用差示扫描量热法(DSC)测定煤样比热,用数学模型解算最短自然发火期。研究表明:榆阳煤矿3#煤层属于自燃煤层;首选CO作为自燃标志气体,采用CO相对量和变化率为自燃趋势预测预报指标,并结合C2H4相对量进行煤层自燃的预测预报,根据升温氧化试验结果,采用最短自然发火期模型解算得出最短自然发火期为55.8 d。  相似文献   

9.
通过对保德煤矿8#煤层煤样的标志性气体实验数据的分析,重点研究了气体产物规律及特性、标志性气体分析与优选、煤自燃临界氧气浓度等。结果表明,CO、C2H4和C3H6气体出现的临界温度分别在62℃、165℃和220℃左右;CO可以作为预测预报煤自然发火的指标气体;煤炭自然发火的临界氧气浓度为7.0%。  相似文献   

10.
卢恒  赵浩东  姜涛 《陕西煤炭》2023,(5):45-48+63
煤层的最短自然发火期是煤的自然发火危险性最重要的指标之一,在开采容易自燃或自燃煤层矿井时首先需对煤层的自然发火危险性进行评价。以新疆某矿23-25号易燃特厚煤层群为研究对象,根据煤层自然发火标志气体色谱分析及指标优选,确定指标性气体为CO、C2H4。基于煤的氧化升温试验,测定了该易燃特厚煤层群在不同温度变化区间内各种气体的产生速率及其随温度的变化趋势。利用DSC实验得到不同温度条件下煤样的比热容,并通过改进的卡连金模型分段计算出煤样升温到各温度点所需的时间,将各段时间叠加,得出该矿煤层的最短自然发火期为39 d,为该矿井安全开采该煤层群以及设计实施安全有效的防灭火措施提供了依据。  相似文献   

11.
为了掌握青东煤矿主采煤层7煤层煤炭自燃氧化程度,并能够及时对该煤层自燃情况进行较为准确的预报预测,防治煤炭自燃灾害的发生,通过对该矿所采煤样进行实验室煤炭自燃氧化模拟实验,在全面系统分析实验数据的基础上,并结合其煤种特征,运用了CO、C2H4、Graham指数、烯烷比多种指标气体体系对该矿主采煤层自燃氧化特性进行了分析研究,确定了各指标气体与煤层自燃氧化程度的对应关系。  相似文献   

12.
煤的化学成分决定了煤矿煤层在开采过程中具有自然发火倾向,需要采取必要的、正确的治理瓦斯、煤自燃的防治等技术措施,从而降低隐患发生的概率。为探究综放工作面的着火原因,基于层次分析法,联系特定矿井或煤层进行分析。结果表明,煤自开采之后发生自燃现象的时间长短、燃烧剧烈程度等只占矿井发生着火事故时对安全的危险程度的一部分;煤自身性质、煤层开掘方式、采煤方法和矿井通风防范等外部条件也都是矿井火灾危害评定所需要考虑的因素与标准。综合分析与评判得到的矿井、煤层或工作面的火灾危险程度,在及时判断与预测火灾的发生、矿井安全管理和火灾防治等方面的操作实施都起到至关重要的作用。  相似文献   

13.
对煤炭自然发火指标气体特性参数进行研究,能够为保障煤矿的安全高效开采提供重要的理论依据。通过实验,研究了口孜东矿13-1煤层自燃特性,以及自燃过程中生成的气体随温升的变化规律。结果表明,指标气体的比值能更好地表征煤温的大小,也更能准确地判断井下煤自燃的状态。  相似文献   

14.
七五煤矿煤层氧化自燃指标气体的选择   总被引:1,自引:0,他引:1  
煤炭在自燃氧化发火过程中会释放出一系列的气体,且不同阶段对应不同的气体成分和浓度,因此分析煤矿井下气体的成分及浓度可预测煤自燃的发生及发展程度。故正确的选择指标气体对预防煤炭自燃有着重要作用。结合现场取样,通过热解实验寻找适合七五煤矿3上煤层的指标气体。  相似文献   

15.
宋彩军  侯海东 《煤》2020,29(3):1-3
为了解决凌志达煤业15号煤层自然发火能够准确预测的问题,通过对煤加热升温产生气体过程的实验并结合优先选择标志性气体的原则,研究确定了15号煤层自然发火标志性气体温度临界值,为下一步煤矿防灭火治理工作和安全高效生产提供基础数据支撑。  相似文献   

16.
针对煤矿自然发火的预测问题,在指标气体分析法的基础上,构建BP神经网络,选取CH4/CO、O2/CO2这2组指标气体浓度比作为网络的输入以降低通风条件的影响,经过训练后,判断检测点是否发火并以0或1的形式输出。网络经过43次训练后,误差达到预设的范围(0.000 1)。研究表明,利用BP神经网络处理从煤层收集到的气体浓度并作出发火预报是可行的且具有相当优势的。  相似文献   

17.
田晓平 《煤矿安全》2012,43(1):137-140
针对西山矿区石炭二叠系矿高瓦斯近距离煤层组自然发火的特点,研究了煤升温氧化过程中气体产物规律及特性,分析与优选了煤样自然发火标志气体,系统性地建立了适用于石炭二叠系煤层的包括碳氢气体产物的绝对量、相对量、比值、二次推导系数在内的自然发火预测预报综合指标体系。  相似文献   

18.
通过对豹子沟煤业10101采煤工作面中9、10、11号煤层煤样实验和分析,得到CO可以在38℃~193℃范围内作为预测预报煤自然发火的指标气体,C2H4和C3H6气体可以在225℃左右和275℃左右时作为预测煤层自然发火的指标气体,C2H2气体可以在320℃~419℃左右范围内作为预测煤层自然发火的指标气体;豹子沟煤业煤层自然发火临界氧气浓度为7.0%,可以据此准确的预测煤层自然发火。  相似文献   

19.
双马煤矿主采煤层具有自然发火期短、易自燃等特征,为确定合理的煤自然发火预测预报指标,以该矿主采的4-1煤层为研究对象,采用实验分析、现场测试和统计分析等方法,对4-1煤层自然发火标志气体及临界值进行了研究。根据4-1煤层煤样氧化实验与现场实际观测,优选出4-1煤层自然发火标志气体,确定了综采工作面上隅角CO体积分数安全管理值及自燃临界值。在此基础上,建立了煤层自然发火分级预警响应与防灭火技术管理体系。结果表明:CO、C2H4、C2H2、C3H8是双马煤矿4-1煤层自然发火标志性气体;Ⅰ0104105工作面上隅角CO体积分数安全管理值为60×10^-6,自燃临界值为430×10^-6;对应建立了煤层自然发火蓝色(Ⅰ级)、黄色(Ⅱ级)、橙色(Ⅲ级)、红色(Ⅳ级)4级预警响应体系。  相似文献   

20.
高位巷道瓦斯抽采诱导浮煤自燃影响效应   总被引:8,自引:0,他引:8  
基于高瓦斯易自燃煤层高位巷道瓦斯抽采技术条件下,以研究煤自燃形成机理为切入点,依据义马煤业集团耿村矿13190工作面自然发火实际情况,通过理论分析,数学建模及现场辅助测试,对煤岩裂隙发育漏风通道模式、采空区浮煤碎胀特性、漏风动力源展开研究,发现巷道瓦斯抽采,增加了高瓦斯易自燃煤层的自燃风险,主要体现在:1)造成工作面、采空区及抽放巷道端口间存在漏风通道及动力;2)采动应力及抽采巷道松动圈造成采空区煤岩裂隙充分发育,采空区浮煤压实程度降低,浮煤碎胀性增加,有利于煤自燃蓄热;3)采空区浮煤一旦氧化,造成采空区高温点与漏风通道间存在温度梯度,从而形成的内生火风压,加剧采空区破裂浮煤的自燃进程,诱导采空区浮煤自燃发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号