首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 261 毫秒
1.
张敏  陈赟  龚沂 《冶金分析》2015,35(10):54-59
采用四硼酸锂-偏硼酸锂混合熔剂[m(Li2B4O7)∶m(LiBO2)=67∶33],稀释比为8∶1,脱模剂为10滴300 g/L碘化铵溶液,预氧化温度和时间分别是600 ℃和200 s,熔融温度和时间分别为1 050 ℃和7.5 min的熔样条件,实现了熔融制样-X射线荧光光谱法(XRF)对石灰石和白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、MnO、K2O、P2O5等组分的准确测定。选择石灰石、白云石标准样品及由标准样品人工合成的校准样品进行校准曲线的绘制,各组分的相关系数均可达到0.99以上。采用OXSAS软件提供的AC+MC综合模式进行谱线重叠干扰校正和基体校正,效果良好。选择标准样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)均小于3%。石灰石、白云石标准样品和实际样品的测定结果与认定值或其他方法测定值进行比较,结果基本相符。  相似文献   

2.
X射线荧光光谱法测定锆矿中10种主次成分   总被引:1,自引:0,他引:1       下载免费PDF全文
采用四硼酸锂和偏硼酸锂混合熔剂熔融制样,利用X射线荧光光谱仪(XRF)测定锆矿中的ZrO2、HfO2、MgO、Al2O3、SiO2、P2O5、CaO、TiO2、Fe2O3、BaO等10种主次成分含量。利用锆矿标准物质及锆矿标准物质与基准试剂SiO2、Al2O3、TiO2、Fe2O3、CaCO3、KH2PO4、MgO、BaO、HfO2按一定比例混合配制的系列校准样品绘制校准曲线,满足各成分的含量梯度。选择0.450 0 g样品加入9.000 g混合熔剂(m四硼酸锂∶m偏硼酸锂=12∶22)、熔样时间为15 min、熔融温度为1 050 ℃、无需加脱模剂进行熔融,熔样效果好。选择ZrLα线避免了ZrKα线以及ZrKβ线穿透样片的问题;采用变异α系数校正基体效应。对锆矿石标准样品及自制校准样品进行分析,各成分的测定值与认定值或参考值相吻合;精密度考察结果表明各成分测定结果的相对标准偏差在0.29%~7.9%之间。  相似文献   

3.
准确测定矾土中的主次成分对确定钒土等级及选择冶炼生产工艺参数具有重要意义。矾土中10余种主次成分含量范围较宽,常需采用两种及以上分析方法分别进行测定。实验用矾土标准样品及成分与矾土相似的3个粘土标准物质绘制校准曲线,以变化理论α系数校正法对基体效应进行校正,以Spectra plus软件进行烧失量校正,建立了熔融制样-X射线荧光光谱法(XRF)对矾土中主次成分(Al2O3、CaO、MgO、P2O5、Fe2O3、TiO2、MnO、SiO2、K2O、Na2O)的测定。实验表明,以四硼酸锂-偏硼酸锂混合熔剂(质量比为67∶33)为熔剂,控制样品稀释比为1∶23,将样品和熔剂搅拌均匀后加入1.0 g硝酸锂于600℃预氧化5 min,升至1 075℃熔融制样10 min,期间分3次加入共50 mg碘化铵为脱模剂,可制成均匀、透明的玻璃片。考察了Spectra plus软件和对样品...  相似文献   

4.
实验采用熔融法制样,以X射线荧光光谱法(XRF)实现了菱镁矿中MgO、Al2O3、SiO2、P2O5、CaO、TiO2、MnO、Fe2O3主次量组分的测定。选择白云岩、水镁石和石灰石国家一级标准物质及人工合成校准样品绘制校准曲线解决了高含量MgO和低含量CaO的测定问题。先测量样品灼烧减量,用灼烧后的样品进行熔片,以消去灼烧减量的含量与X射线荧光强度建立校准曲线,并进行基体校正,测出未知样灼烧后的含量后,再换算为样品实际含量。灼烧后样品与熔剂Li2B4O7的稀释比为1∶10,加入1滴LiBr溶液(1.0 g/mL)作为脱模剂,在1 050 ℃熔融9 min制备熔片。各组分校准曲线的相关系数在0.997 6~0.999 9之间;方法检出限在10~320 μg/g之间。对一菱镁矿实际样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)在0.25%~3.6%之间。所建方法应用于菱镁矿标准物质和实际样品的测定,结果与标准物质认定值或实际样品湿法值基本一致。  相似文献   

5.
消泡剂采用四硼酸锂和偏硼酸锂混合熔剂[m(Li2B4O7)∶ m(LiBO2)=67∶33],稀释比为1∶10,滴加5滴200 g/L溴化铵溶液做脱模剂,在950 ℃下熔融18 min制备熔片。采用石灰石标准样品中添加基准碳酸钠的合成校准样品来绘制校准曲线,建立了X射线荧光光谱法(XRF)对铁水预处理脱硅消泡剂中二氧化硅、三氧化二铝、氧化钙、氧化镁、三氧化二铁和氧化钠等主次成分进行同时测定的方法。将烧失量作为消去组分处理,使用COLA模式校正,校正后的曲线能够准确测定未灼烧样品中主次成分的含量,大大缩短了分析时间。经验证,各组分测定结果的相对标准偏差(n=11)都在2%以内,消泡剂实际样品的分析结果与化学法分析结果吻合较好。  相似文献   

6.
钟坚海 《冶金分析》2018,38(11):24-29
铝矿中主、次及微量成分含量对生产工艺及产品质量具有重要影响,传统的检测方法操作过程繁琐,分析周期长,已难以满足检测需求。实验采用熔融法制样,样品经硝酸锂预氧化后,选择质量比为12∶22的Li2B4O7和LiBO2混合试剂作为熔剂,熔剂与样品比例为10∶1,以NH4I为脱模剂,在1050℃下熔融10min制备熔片。采用有证标准物质及其与高纯Al2O3的人工合成样品为校准样品,对谱线重叠情况进行了考察,并通过变化的理论α系数法校正元素间的吸收增强效应,建立了铝矿中Al2O3、SiO2、Fe2O3、CaO、MgO、P2O5、Na2O、K2O、TiO2、MnO、Ga2O3、ZrO2、V2O5、Cr2O3及S等15种组分的X射线荧光光谱法(XRF)。精密度实验表明,各组分测定结果的相对标准偏差(RSD,n=9)在0.18%~12%之间;对标准样品进行正确度考察,测定值与认定值一致。方法可同时满足铝土矿、叶蜡石、莫来石、矾土、高岭土等多种铝矿的测定。  相似文献   

7.
以镍、钴为主的多金属矿分析,因基体复杂、缺乏标样等因素,研究报道相对较少。实验建立了以熔融法制样,X射线荧光光谱法(XRF)测定以镍、钴为主的多金属矿中主量组分(SiO2、Al2O3、TFe(以Fe2O3形式表示)、CaO、MgO、K2O、Na2O、TiO2、P2O5、MnO)及矿化元素(Ni、Co)的方法。重点研究了熔融制样熔剂、熔剂和样品稀释比、氧化剂、预氧化温度和时间、熔融温度和时间、基体效应校正等影响因素,并进行了方法指标测试。研究表明,采用Li2B4O7-LiBO2-LiF(m∶m∶m=4.5∶1∶0.4)混合熔剂,以LiNO3为氧化剂,熔剂和样品20∶1的稀释比,在650℃预氧化4min,1050℃熔融9min,能制得较好的熔片。对样品进行精密度考察,各组分测定结果的相对标准偏差(RSD)为0.49%~6.2%,按照实验方法对镍钴矿石标准物质进行分析,测定值与认定值一致。  相似文献   

8.
熔融制样-X射线荧光光谱法测定锰矿中9种组分   总被引:2,自引:1,他引:1       下载免费PDF全文
探讨了熔融制样-X射线荧光光谱法测定锰矿中TMn、TFe、SiO2、Al2O3、CaO、MgO、TiO2 、P2O5、K2O等常见组分的分析方法。对试样进行烧损校正,采用国家标准物质和以国家标准物质为基体制备的校准样品,建立了基体校正后的校准曲线。通过试验确定以四硼酸锂为熔剂、硝酸铵为氧化剂、熔融中间和定型前分2次加入总量为0.15 g的NH4I脱模剂,采用1∶12.5的稀释比例高温熔融制样。方法用于锰矿标准样品与实际样品分析,标准样品的测定值与认定值一致,实际样品的分析结果与其他方法的结果吻合,满足了生产现场快速分析的需要。  相似文献   

9.
研究了熔融制样-X射线荧光光谱法测定磁铁矿中7种组分的分析方法。考察了稀释比、硝酸锂氧化剂用量、溴化锂脱模剂用量等因素,在优化条件下进一步选择了熔融温度及熔融时间。按试样与熔剂稀释比为1∶20在1 050 ℃熔融10 min制成玻璃样片,直接用X射线荧光光谱法(XRF)测定磁铁矿中的TFe、CaO、MgO、Al2O3、SiO2、TiO2和S。选择含铁量不同的一组磁铁矿标准样品建立校准曲线,线性相关系数均不小于0.997 4。测定磁铁矿实际样品时,测定结果与化学法一致,相对标准偏差中TFe为0.29%,S为3.4%,其它组分在0.29%~2.5%之间。  相似文献   

10.
红土镍矿焙砂、烟尘及电炉渣等镍铁冶炼过程物料经氧化预处理后熔融制样,采用铁矿石、转炉渣标准样品与自制的红土镍矿标样组合建立X射线荧光光谱(XRF)分析校准曲线,实现了镍铁冶炼过程物料中Ni、Fe、SiO2、MgO、CaO、P2O5、Al2O3、Cr2O3、MnO、Co等10种组分的快速准确测定。试验发现,样品粒度为200目(74 μm),900 ℃温度下空气氧化45 min后,各还原性组分的质量分数均较低,在此氧化条件下经氧化灼烧的红土镍矿焙砂、烟尘及电炉渣样品中金属单质及残碳质量分数均可降至0.1%以下,达到了使用铂黄合金坩埚对样品制备熔融片的要求。选择偏硼酸锂和四硼酸锂混合熔剂、稀释比为10、在1 050 ℃熔融15 min,熔融效果较好。采用理论α系数进行基体校正,各测定组分校准曲线的线性相关系数达到0.999以上。采用红土镍矿及其焙砂、烟尘和电炉渣样品进行分析,精密度实验结果表明,各组分测定值的相对标准偏差(RSD, n=9)小于5%。测定结果根据灼烧减量校正计算后得出样品中各组分含量,结果与化学法测定值基本一致。  相似文献   

11.
菱镁矿、白云石的化学成分是钙镁质耐火材料检测的重要指标,由于菱镁矿、白云石烧失量大,加热易分解,灼烧后的试样放置时间长或放置方式不当,极易吸收空气中的水分和CO2,导致样品变质结块,影响测定结果的准确性,因此合理地优化测定条件对提高分析方法的准确度非常关键。实验采用熔融制样-X射线荧光光谱法(XRF)测定菱镁矿、白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、P2O5含量。直接以烧失量测定后的试样质量作为试样量,最大限度地避免了空气中水分和CO2对称样量的影响,简化操作步骤,缩短检测时限。经试验确定采用Li2B4O7-LiBO2(m∶m=67∶33)混合熔剂,灼烧后样品与熔剂的稀释比为1∶10,NH4I溶液为脱模剂,熔融温度1050℃,熔融时间15min制备试样玻璃片。选取12种国家标准样品绘制校准曲线,线性相关系数为0.9997~0.9999。对菱镁矿、白云石标准物质进行精密度试验,各组分测定结果相对标准偏差(RSD,n=10)为0.14%~1.6%;应用实验方法对菱镁矿、白云石标准样品进行测定,结果与认定值基本一致,各组分的相对误差(n=5)为0.15%~5.88%。  相似文献   

12.
菱镁矿、白云石的化学成分是钙镁质耐火材料检测的重要指标,由于菱镁矿、白云石烧失量大,加热易分解,灼烧后的试样放置时间长或放置方式不当,极易吸收空气中的水分和CO2,导致样品变质结块,影响测定结果的准确性,因此合理地优化测定条件对提高分析方法的准确度非常关键。实验采用熔融制样-X射线荧光光谱法(XRF)测定菱镁矿、白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、P2O5含量。直接以烧失量测定后的试样质量作为试样量,最大限度地避免了空气中水分和CO2对称样量的影响,简化操作步骤,缩短检测时限。经试验确定采用Li2B4O7-LiBO2(m∶m=67∶33)混合熔剂,灼烧后样品与熔剂的稀释比为1∶10,NH4I溶液为脱模剂,熔融温度1050℃,熔融时间15min制备试样玻璃片。选取12种国家标准样品绘制校准曲线,线性相关系数为0.9997~0.9999。对菱镁矿、白云石标准物质进行精密度试验,各组分测定结果相对标准偏差(RSD,n=10)为0.14%~1.6%;应用实验方法对菱镁矿、白云石标准样品进行测定,结果与认定值基本一致,各组分的相对误差(n=5)为0.15%~5.88%。  相似文献   

13.
硅藻土是一种重要的非金属矿产,其主次组分的测定一般采用重量法、滴定法等,操作过程繁琐、化学试剂用量大、分析周期长。实验采用熔融法制样,X射线荧光光谱法(XRF)同时测定硅藻土中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2等主次组分。选择高纯试剂人工合成校准样品系列,用测定烧失量后的样品制备玻璃熔片,克服了缺少硅藻土标准物质及烧失量对测定结果的影响。样品与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(质量比为4.5∶1∶0.4)的稀释比为1∶10,LiBr溶液作为脱模剂,在1050℃熔融9min制备熔融片。各组分校准曲线的线性相关系数在0.9962~0.9999之间;方法检出限在18~266μg/g之间。按照实验方法测定硅藻土样品中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2,测定结果的相对标准偏差(RSD,n=8)在0.25%~1.4%之间。所建方法应用于相近标准物质(GBW03103软质粘土和GBW03114硅质砂岩)和4种不同品位的硅藻土样品中各组分的测定,测定结果与标准物质认定值或实际样品湿法测定值基本一致。  相似文献   

14.
徐建平  张兆雄 《冶金分析》2018,38(12):48-53
在铁合金和铁矿石的X射线荧光光谱(XRF)熔片分析中,存在着样品直接灼烧和熔融质量变化不同产生的误差,常用的稀释比校正无法校正这种误差。实验提出在固定质量(体积)的熔剂中熔入系列被测组分的氧化物制备出质量(体积)相同的玻璃片标准系列,建立X射线荧光强度与玻璃片中被测组分体积浓度的函数曲线,使用样品玻璃片质量与校准曲线玻璃片的质量比校准分析结果,即质量校正代替稀释比校正。以纯物质(SiO2、CaCO3、Al2O3和Fe2O3)为标准,用选定的仪器工作条件,建立了硅钙合金分析用Si、Ca、Fe、Al质量分数对荧光强度的校准曲线,其线性相关系数分别为0.9990、0.9993、0.9994、0.9995。用标准样品考察了校准曲线的准确度。t检验结果表明,当玻璃片的质量变化较大时,不使用质量校正测量结果偏差较大,正确度差。  相似文献   

15.
石灰石、白云石样品与混合熔剂(Li2B4O7-LiBO2-LiBr)稀释比为1∶8,硝酸锂做氧化剂、950 ℃熔融20 min制备玻璃片,应用X射线荧光光谱法(XRF)测定石灰石、白云石中氧化钙、氧化镁、二氧化硅、三氧化二铝、三氧化二铁、氧化锰、磷、硫、二氧化钛、氧化锶、氧化钾和氧化钠12种组分。通过标准样品、光谱纯物质、标准样品与标准溶液合成样品及化学定值样品制作校准曲线并进行分段回归。应用康普顿散射线校正铁、锰、锶元素,经验系数法校正其他9种元素,可有效克服石灰石、白云石中各组分测定时基体效应的影响。对样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)在0.18%~11.4%之间。对标准样品及未知样品进行正确度考察,测定值与认定值或湿法值一致。  相似文献   

16.
针对铬矿主次组分同时测定中存在的问题,建立了熔融制样-X射线荧光光谱法同时测定铬矿中Cr_2O_3、Fe、MgO、SiO_2、Al_2O_3、CaO、P、S、K_2O、Ni、Co、Ti、Mn、V等14种主次组分的分析方法。以Li_2B_4O_7-LiBO_2(m∶m=67∶33)为熔剂,稀释比1∶20,定量加入氧化-脱模混合溶液(500g/L NaNO_3溶液-70g/L LiBr溶液),在700℃预氧化5min,在1100℃熔融20min,制得透明的熔片。使用铬矿标准物质与钒钛铁精矿标准物质,光谱纯试剂氧化镍按不同比例混合制备合成校准样品系列,拓展了校准曲线含量范围。方法的检出限为10~748μg/g。采用理论α系数法和经验系数法相结合的方法校正基体效应。对1个铬矿样品进行精密度考察,测定结果的相对标准偏差(RSD,n=12)均小于5%;采用实验方法对1个铬矿标准物质进行分析,测定结果与认定值相符,能满足铬矿中各成分的检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号