首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为探究高密度城区绿地景观格局对于PM2.5浓度与O3浓度的尺度效应,分析西安市高密度城区范围,选取边界密度(ED)、景观形状指数(LSI)、面积加权形状指数(SHAPE_AM)和平均形状指数(SHAPE_MN)共4个景观格局指数衡量绿地景观格局,爬取2020—2021年国家空气质量监测站点的大气监测数据,运用皮尔逊相关性分析和线性回归分析方法,探究多尺度下高密度城区绿地景观格局对PM2.5和O3的时空分布特征、绿地景观格局特征和PM2.5浓度、O3浓度与景观格局指数的多尺度影响关系.结果表明,景观格局在夏季对于PM2.5浓度、在春季对于O3浓度的影响更为显著;在高密度城区内较小尺度的绿地上优化景观格局对PM2.5与O3浓度影响更有效.由此提出的绿地优化策略可为城市高密度城区多尺度绿地规划设计提供参考依据.  相似文献   

2.
为全面了解杭州市PM2.5中水溶性离子的污染特征及其来源,于2014年10月—2015年9月在杭州市2个采样点采集了PM2.5样品,运用离子色谱法对PM2.5中的水溶性离子进行了分析.结果表明:PM2.5中9种水溶性离子的年均质量浓度为46.63μg/m3,占PM2.5质量浓度的54.97%.主要离子Cl-,NO3-,SO42-,NH4+质量浓度季节变化明显,表现为冬季>秋季>春季>夏季.SOR值和NOR值说明杭州市大气中二次颗粒明显存在,并且SO2的二次转化率大于NO2的二次转化率.因子分析表明:二次气溶胶、道路扬尘、建筑扬尘和工业排放是采样期间杭州市PM2.5的主要来源.  相似文献   

3.
PM2.5属于大气细颗粒物,能够长时间悬浮于空气中且易被人体吸入,影响人类的身体健康。以河南省18个观测站逐小时PM2.5浓度数据为研究对象,采用数理统计、反距离权重和地理探测器等方法,探讨河南省PM2.5浓度的时间和空间变化特征及其影响因素。研究表明:(1)年际尺度上,2017—2022年河南省年均PM2.5浓度呈下降趋势。(2)季节尺度上,四季PM2.5平均浓度由高到低依次为:冬季(89.5±16.2μg/m3)、秋季(48.5±5.5μg/m3)、春季(41.4±6.1μg/m3)、夏季(28.8±7.3μg/m3),冬季平均浓度远高于其他三季。(3)月份尺度上,PM2.5浓度呈“U”型变化特征,1~7月呈降低趋势,8~12月呈增加趋势,其中1月浓度最高(107.9±12.2μg/m3),7月浓度最低(27.0±10.6μg/m3<...  相似文献   

4.
为研究华北平原PM2.5、PM1.0的污染特征,于2014年10月至2016年6月在济南城区使用中流量采样器对大气颗粒物样品进行采集,利用离子色谱、碳气溶胶分析仪测定了颗粒物中的水溶性无机离子成分和碳组分。结果表明:济南城区冬季大气细颗粒污染较重,二次离子SO42-、NO3-和NH4+是PM2.5、PM1.0最主要的水溶性无机离子,且更易富集在PM1.0中。有机碳和元素碳的质量浓度表现为春夏低,秋冬高;二次有机碳的质量浓度在冬季明显升高,且大多分布在粒径>1 μm的颗粒物中。72 h后向气流轨迹表明,来自河北、内蒙古的长距离传输与山东地区的局地传输对济南大气中PM2.5和PM1.0的离子质量浓度有重要影响。济南冬季的消光系数高达789.13 Mm-1, PM2.5中的二次粒子NH4+、SO42-和NO3-与消光系数的相关性较高,是使大气能见度降低的主要因素。  相似文献   

5.
为了解包头市固阳县环境空气污染现状,系统分析污染物浓度变化特征,对固阳县2016—2021年环境空气中的SO2,NO2,PM10,PM2.5,CO,O3浓度随时间变化特征开展研究.采用空气质量指数法,确定固阳县首要污染物,并提出改善环境空气质量相关措施.结果表明:2016—2021年空气质量相对较好的为2020年,2018年为相对较差年份,3月至5月空气质量指数较大;研究期内臭氧和PM10为固阳县环境空气首要污染物;SO2,NO2,CO质量浓度表现为冬春季高,夏秋季低.臭氧浓度变化为秋冬季较低,夏季浓度达到最大;PM10,PM2.5质量浓度呈春季高夏季低趋势.建议通过调整和优化产业结构与能源结构,构建科学的监督管理模式以及加强污染物的治理力度等措施改善环境空气质量.  相似文献   

6.
以2015—2021年9月安徽省空气质量指数为样本,利用GIS空间分析等方法,分析安徽省全域PM2.5质量浓度的时空变化特征,并对可能的影响因素进行探讨。结果表明:1)2015年以来安徽省PM2.5质量浓度在时间变化上呈现逐渐递减趋势,在季节变化上具有春冬高、夏秋低的特点,在年际变化中2015—2018年PM2.5质量浓度在皖中地区减少幅度最为明显,其中,以合肥市减幅最大;2018—2021年PM2.5质量浓度在皖北地区减少幅度最为显著,以亳州市减幅最大。2)安徽省PM2.5质量浓度在空间分布上呈现由北向南的递减趋势,最高值出现在皖北,最低值出现在皖南,且存在东西部之间的差异。3)自然因素(地形地势、降雨量和风速)和人类活动(产业结构和能源消费、政策和思想理念)对安徽省PM2.5质量浓度的时空分布和变化具有较大的影响,使得安徽省全域PM2.5质量浓度逐渐减少,大气环境质量逐年提高。  相似文献   

7.
为探讨不同植物群落对大气颗粒物浓度的影响,以郑州市金水区为例,在2020年冬季(2020年12月—2021年2月)对园林绿化区(数码公园)、居住区(正弘·蓝堡湾)、文教区(河南农业大学)内植物群落的PM2.5和PM10质量浓度及气象因子(温度、相对湿度和风速)进行监测.结果表明:每个功能区中不同样地之间的PM2.5、PM10质量浓度日变化趋势基本一致,一般为早高晚低;不同植物群落之间PM2.5和PM10质量浓度存在显著差异性,其中广场样地与其他样地的差异性最显著;3个功能区中各样地对PM2.5和PM10质量浓度的阻滞率均表现为乔灌草结构最高,乔灌结构和乔草结构次之,且多表现为乔灌样地大于乔草样地,灌草结构和草坪最低;研究区域PM2.5、PM10质量浓度与温度呈负相关,与相对湿度呈正相关,与风速呈负相关.  相似文献   

8.
针对PM2.5浓度的非线性和不确定性,提出了一种基于集成树-梯度提升决策树(EnsembleTrees-GBDT)的PM2.5预测模型.该模型首先在集成树框架下进行特征选择,即选取PM2.5浓度主要影响因素,使用算术均值聚合法计算出各项特征对PM2.5浓度增加的影响程度,并以影响程度由强到弱的次序排序;其次使用网格搜索对GBDT算法进行参数优化,选取树的深度等参数的最优值;最后构建完整的PM2.5浓度集成预测模型.使用北京市2015-2016年的污染物浓度和气象条件观测值2个数据集,对模型进行了预测仿真实验.对比实验结果表明,所提出的EnsembleTrees-GBDT预测模型相比于决策树、随机森林、支持向量机等模型,具有更低的平均绝对误差和均方根误差,同时具有更好的泛化能力,能够更准确地预测PM2.5浓度,并实现对PM2.5浓度影响因素的有效分析.  相似文献   

9.
利用银川市2013年空气污染物日浓度资料,分析了其PM10、PM2.5的质量浓度变化特征及空气质量分指数等级特征.结果表明,PM10和PM2.5的质量浓度变化具有明显的季节特征,夏季最低,冬季最高,PM10质量浓度春季高于秋季,而PM2.5质量浓度春季略低于秋季;PM10和PM2.5月均质量浓度变化均为1月份最大,7月份最小;PM2.5和PM10日均质量浓度显著相关,相关系数达0.76,在2013年中,PM2.5占PM10质量载荷的36%.PM10和PM2.5在7—9月质量浓度低,空气质量分指数等级最好,达标率均为100%,在1月空气质量分指数等级最差.PM10和PM2.5分指数等级具有明显的季节特征,夏季空气质量分指数等级最好,冬季最差,PM10分指数等级秋季好于春季,PM2.5分指数等级春季好于秋季.  相似文献   

10.
气溶胶粒径分布可反映气溶胶的主要来源及其经历的动力学和化学等过程。使用宽范围粒径谱仪对青藏高原东缘四川省理塘县2017年7月6日至8月3日10 nm~10 μm气溶胶粒径分布进行观测,结合环保六要素(PM2.5、PM10、SO2、NO2、CO和O3)和气象要素数据、HYSPLIT轨迹模式、潜在源区贡献函数(PSCF)和浓度权重轨迹(CWT)分析,探讨了青藏高原东缘气溶胶的粒径分布特征、潜在来源和影响区域。结果表明:青藏高原东缘理塘地区气溶胶数浓度较低,平均值为4 660.3 cm-3,粒径分布主要集中在500 nm以下,占总数浓度的99.95%; 不同模态粒子数浓度差异较大,核模态、爱根核模态、积聚模态和粗模态粒子数浓度分别为391.9、4 218.0、50.1和0.4 cm-3; 不同模态粒子数浓度日变化均为双峰型分布,但是峰值时间存在差异,核模态粒子数浓度日变化的峰值时间位于12:00和19:00,爱根核模态、积聚模态和粗模态粒子数浓度日变化的峰值时间位于08:00和20:00; 气溶胶数浓度谱和表面积浓度谱均为单峰型分布,峰值分别位于50 nm和170 nm,峰值浓度分别为7 361.9 cm-3·nm-1和215.5 μm2·cm-3·nm-1。青藏高原东缘气溶胶数浓度的潜在来源高值区主要分为两个区域,即东北部的局地污染区和西南部的境外远距离传输区。青藏高原东缘气溶胶数浓度的影响范围主要集中在中国境内,影响区域的高值区相对比较分散。  相似文献   

11.
随着我国的经济和城市化迅速发展,PM2.5主导的区域空气污染已成为紧迫、突出的环境问题。据相关研究表明,PM2.5在不同季节质量浓度差异较大。根据广州市2015~2019年的PM2.5月均质量浓度数据,结合大气污染物及气象因素,引入季节指数,建立预测PM2.5质量浓度的改进多元线性回归和多层感知器组合预测模型,探析广州市大气污染物中PM2.5质量浓度的变化规律。结果表明,用季节指数改进的组合预测模型对PM2.5质量浓度进行预测分析,拟合结果良好。使用不同评价指标将组合模型与传统的多层感知器预测模型和多元线性回归模型进行对比,该组合模型的均方根误差(Root Mean Square Error,RMSE)、平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)、平均绝对误差(Mean Absolute Error,MAE)分别比多层感知器模型减少了23.1%、31%、24.2%;比多元线性回归模型减少了35.3%、41.3%、41%。该模型精度均优于传统的多元线性回归模型和多层感知器模型,能更好地预测环境PM2.5质量浓度,为优化环境提供参考。  相似文献   

12.
基于气象因素的PM2.5质量浓度预测模型   总被引:1,自引:0,他引:1  
为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM2.5质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM2.5质量浓度的日变化情况;与多元线性回归预测模型相比,BP神经网络和支持向量机两种预测模型能较好地捕捉PM2.5质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM2.5质量浓度预测的首选方法。  相似文献   

13.
厨房烹饪是民居室内PM2.5污染物的重要来源,为对其进行有效控制,提出了空气幕送风方式。建立厨房物理模型,使用Fluent软件对厨房内的气流组织、温度分布和PM2.5浓度分布进行了数值模拟。研究了空气幕对厨房内PM2.5和热流的控制效果,并对3种射流速度进行对比分析。研究结果表明:空气幕射流气流对烹饪区域产生了很好的包裹效应,可以阻隔PM2.5的扩散和热流的蔓延;可使厨房内PM2.5排除率提高到44%~75%,平均降温1~2℃。当空气幕射流速度为0.6 m/s时,控制效果最佳。研究结论可对厨房PM2.5污染的防治提供参考,为空气幕送风系统的研究提供模拟数据和理论依据。  相似文献   

14.
提出一种基于深度信念网络(deep belief networks, DBNs)的区域PM2.5日均值预测方法,讨论了训练数据选择方式,并优化了DBNs参数设置。通过相关实验并与基于径向基神经网络(radial basis function, RBF)和反向传播神经网络(back propagation, BP)方法比较,验证了基于DBNs方法的可行性和预测精度。实验结果表明:基于DBNs的方法,区域(西安市)预测PM2.5日均值与观测日均值之间均方差(mean square error, MSE)为8.47×10-4mg2/m6;而采用相同数据集,基于RBF和BP的方法均方差为1.30×10-3mg2/m6和1.96×10-3mg2/m6。比较分析表明:基于DBNs的方法能较好预测区域整体PM2.5的日均值变化趋势,显著优于基于神经网络和径向基网络方法的预测结果。  相似文献   

15.
为了研究四川盆地气候变化的时空分布特征,利用1955—2010年四川盆地内15个气象站的月降水量和月气温资料,使用高桥浩一郎蒸发公式计算月蒸发量,采用云模型描述降水量、气温和蒸发量在时间上分布的特性,运用Kendall秩次相关法分析降水量、气温和蒸发量的时空分布特征。结果显示:1955—2010年的四川盆地年度及季度降水量序列中,冬季平均降水量分布最不均匀,秋季次之;年度及季度气温序列中,冬季平均气温分布最不均匀,且最不稳定,秋季平均气温分布最稳定;年度及季度蒸发量序列中,冬季平均蒸发量分布最不均匀,多年平均蒸发量序列分布最均匀;年度及季度降水量均呈下降趋势;年度及季度气温中除夏季平均气温呈下降趋势外,其余均呈上升趋势;年度与秋季蒸发量呈下降趋势,春、夏、冬3个季节的平均蒸发量呈上升趋势。对四川盆地气候变化时空分布特征的分析,可为该地区的气候变化研究提供参考与技术支持。  相似文献   

16.
利用AMA254测汞仪分析了淮南市大气颗粒物中的汞含量,分析其分布的季节特征。研究结果表明:大气PM10和PM2.5颗粒物中汞的质量浓度季节变化为:冬季〉夏季〉春季〉秋季,体积浓度变化为:冬季〉秋季〉春季〉夏季。相关性分析中表明,大气中颗粒态汞主要富集在PM2.5中。  相似文献   

17.
为探讨济南市灰霾日大气细颗粒物的化学组分特征, 于2014-01-15—02-17利用PM1.0、 PM2.5中流量采样仪,离子色谱及OC/EC分析仪等研究手段,对济南市灰霾日PM1.0及PM2.5的浓度水平及化学组成进行了系统研究。结果表明:灰霾日和非灰霾日NO-3、SO2-4、NH+4均为PM1.0和PM2.5的主要成分,灰霾日时NO-3、SO2-4、NH+4质量浓度占PM1.0和PM2.5质量浓度的比例明显升高,并且三种成分质量浓度在PM1.0中均有显著升高,显示二次无机气溶胶的快速增加是灰霾形成的重要因素。碳质组分(OC+EC)是PM1.0及PM2.5中所占比例为第二位的组分,灰霾日OC和二次有机碳(SOC)较非灰霾日明显升高,表明灰霾日更有利于SOC的生成。72 h后向气流轨迹分析表明,起源于山东省内东部及北京、天津一带气流的近地面传输对灰霾形成有重要影响。  相似文献   

18.
石家庄市冬季大气中TSP,PM10,PM2.5污染水平研究   总被引:1,自引:0,他引:1  
为研究石家庄市冬季大气颗粒物污染特征,于2013年2月采集TSP,PM10,PM2.5样品,用重量法分析其质量浓度,并对其相关性进行分析.结果表明,用环境空气质量标准(GB 3095-2012)来衡量,石家庄市冬季大气颗粒物TSP,PM10和PM2.5的日均浓度超标率分别为57.9%,82.9%和81.6%;超标倍数分别为1.28,1.86和2.24倍,超标情况严重;TSP与PM10和PM10与PM2.5相关系数分别为0.748 9和0.760 4,相关性较好;ρ(PM10)/ρ (TSP)平均值为0.74,ρ(PM2.5)/ρ(PM10)平均值为0.61,表明PM10和PM2.5污染严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号