首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
研究温度场中旋转刚体-梁系统的刚-柔耦合动力学特性.考虑几何非线性和热效应,从精确的应变-位移关系式出发,用虚功原理和有限单元法建立了旋转刚体-梁系统的刚-柔耦合动力学方程.由于非线性刚度阵与变形的高次项有关,将非线性刚度阵的各元素表示为广义坐标阵和常值阵的乘积.数值计算表明,该方法可避免重复积分,提高计算效率.在此基础上研究了在温度递增的情况下几何非线性对系统的刚-柔耦合动力学特性的影响,用频谱分析方法研究了系统的固有频率随中心刚体转动惯量和温度的变化.  相似文献   

2.
对热载荷作用下中心刚体与大变形薄板多体系统的动力学建模问题进行研究.基于Kirchhoff假设,从格林应变和曲率与绝对位移的非线性关系式出发,推导了非线性广义弹性力阵,用绝对节点坐标法建立了大变形矩形薄板的有限元离散的动力学变分方程.为了考虑刚体姿态运动、弹性变形和温度变化的相互耦合作用,推导了热流密度与绝对节点坐标之间的关系式.引入系统的运动学约束方程,建立了中心刚体-矩形板多体系统的考虑刚-柔-热耦合的热传导方程和带拉格朗日乘子的第一类拉格朗日动力学方程.为了有效地提高计算效率,将改进的中心差分法和广义-α法相结合,求解热传导方程和动力学方程,差分后的方程通过牛顿迭代法耦合求解.对刚-柔耦合和刚-柔-热三者耦合两种模型的仿真结果进行比较表明,刚体运动对温度梯度和热变形的影响显著.此外,本文建模方法考虑了几何非线性项,因此也考虑了热膨胀引起的轴向变形对横向变形的影响.  相似文献   

3.
为研究弹性体在稠密大气中的分离问题,基于非结构网格,采用运动网格与局部网格重构相结合的方法求解大位移相对运动的流场,并耦合6自由度刚体运动方程得到整流罩的运动.非定常流动方程使用格心有限体积法进行空间离散,并运用LU-SGS进行求解.应用标准算例验证该方法的准确性,并用于某整流罩飞行轨迹的计算.结果表明结构变形可能会使...  相似文献   

4.
共形几何代数与运动和形状的刻画   总被引:2,自引:0,他引:2  
共形几何代数在基于运动和形状刻画的视觉和图形学若干问题中的应用,反映了它能够提供统一和有效的表示和算法,这些应用主要集中在采纳几何体的Grassmann分级表示以及刚体运动的旋量和扭量表示.着重介绍了Grassmann分级表示如何被应用于单眼视觉问题并带来解决方法的简化;通过对刚体运动不同表示的分析,介绍旋量和扭量表示如何克服刚体运动蹬矩阵表示中参数空间具有过多非线性约束的缺点,从而为姿态估计、形状逼近和曲线拼接等问题的解决提供简化方案.  相似文献   

5.
空间曲梁非线性动力学方程   总被引:4,自引:3,他引:1  
基于有限变形原理,采用微分几何的方法推导了不考虑剪切、转动惯量和翘曲影响的曲梁的二维变形的应力-应变关系.然后利用Hamilton变分原理推导了三维空间曲梁在考虑三个位移自由度和三个转动自由度下的非线性动力学方程.把得到的非线性动力学方程退化为面内圆弧拱的线性动力学方程,并与已有结果进行了对比.非线性动力学方程的建立为曲梁的非线性动力学分析做好了必要的准备.  相似文献   

6.
机器人运动弹性动力学建模的伽辽金变分法   总被引:1,自引:0,他引:1  
高振新  刘廷荣 《机器人》1991,13(6):15-21
本文基于Newton—Euler方程,根据Timoshcnko弹性理论提出了空间运动机器人运动弹性动力学(KED)建模的伽辽金变分法。该模型全面考虑了各杆件(不一定为细长杆)的所有弹性变形(拉压、剪切、弯曲、扭转)均布质量、集中质量及刚体运动与弹性振动间耦合作用的影响,更准确地描述了机器人弹性振动。  相似文献   

7.
悬臂梁大变形的向量式有限元分析   总被引:1,自引:0,他引:1  
为分析悬臂梁的几何非线性行为,用向量式有限元法将结构离散成质点系以及质点间的连接单元.根据牛顿第二定律得到每个质点在内力和外载荷作用下的运动方程以及悬臂梁在每个时刻的变形用该时刻质点系的运动表示.结合刚架元的节点内力和等效质量得出质点位移的迭代计算公式,采用FORTRAN编制计算程序,对悬臂梁分别承受集中载荷和弯矩下的大变形进行算例分析.计算结果与理论解吻合较好,表明该方法能很好地模拟分析悬臂梁的大变形.  相似文献   

8.
从连续介质力学中关于弹性薄板的变形理论出发,讨论绕轴作大范围运动的弹性薄板的动力学性质.由于在无大范围运动的情况下,弹性薄板的变形对系统的动力学性质影响很小而被忽略,而其一旦与大范围运动耦合,对系统的动力学性质产生明显的影响.根据弹性薄板的应变-位移几何非线性关系,建立了作大范围运动弹性薄板的几何非线性动力学方程,然后利用Garlerkin模态截断方法建立了该系统的离散动力学方程,仿真计算验证了理论分析的正确性,从而表明了系统的横向振动是稳定的.  相似文献   

9.
基于二维等截面梁元几何非线性有限元理论,按照更改的拉格朗日列式法,推导了刚架可进行非线性分析的弹性刚度矩阵和几何刚度矩阵,并被推广到变截面梁元。使用有限元软件Ansys对单跨门式刚架平面内几何非线性稳定性作了分析.  相似文献   

10.
计算单元矩阵是有限元计算的基本要素之一。一个功能齐全的有限元应用软件系统,总是要配上元素类型尽可能多的单元矩阵库,并以元素类型的多少,作为衡量系统功能的尺度之一。现在,有限元应用软件已由线性分析发展到非线性分析,由静力分析发展到动力分析,单元矩阵的计算和相应的程序设计,应有一个统一的规划。就有限元位移法而言,一旦确定了单元的位移插值函数,单元矩阵(刚度矩阵、几何矩阵、质量矩阵、非线性  相似文献   

11.
In this paper, we present a formulation of the quaternion constraint for rigid body rotations in the form of a standard perfect bilateral mechanical constraint, for which the associated Lagrangian multiplier has the meaning of a constraint force. First, the equations of motion of a scalable body are derived. A scalable body has three translational, three rotational, and one uniform scaling degree of freedom. As generalized coordinates, an unconstrained quaternion and a displacement vector are used. To the scalable body, a perfect bilateral constraint is added, restricting the quaternion to unit length and making the body rigid. This way a quaternion based differential algebraic equation (DAE) formulation for the dynamics of a rigid body is obtained, where the 7×7 mass matrix is regular and the unit length restriction of the quaternion is enforced by a mechanical constraint. Finally, the equations of motion in the form of a DAE are linked to the Newton–Euler equations of motion of a rigid body. The rigid body DAE formulation is useful for the construction of (energy) consistent integrators.  相似文献   

12.
对作大范围运动柔性机械臂系统,进行斜碰撞动力学分析.基于柔性多体系统刚柔耦合动力学理论,计入耦合变形项,全面考虑大范围刚体运动与弹性小变形运动的耦合,建立系统连续动力学方程.引入斜碰撞力学模型,将法向和切向碰撞力以广义力的形式加入动力学方程中,对系统进行斜碰撞动力学建模分析.法向碰撞模型选取基于连续接触力法的非线性弹簧阻尼模型,切向碰撞模型选取一种修正Coulomb摩擦模型,对切向摩擦力进行统一描述.给出接触、分离判据,实现不同状态的动力学模型转换与求解.对斜碰撞全局动力学进行了仿真验证,分析了柔性机械臂全局过程的动力学特性变化以及碰撞对大范围运动和小变形运动的作用,并对比了不同碰撞方向对大范围运动、变形、机械能、碰撞力等动力学参数的影响.  相似文献   

13.
An efficient method for dynamics simulation for elastic beam with large overall spatial motion and nonlinear deformation, namely, the Riccati discrete time transfer matrix method (Riccati-DT-TMM), is proposed in this investigation. With finite segments, continuous deformation field of a beam can be decomposed into many rigid bodies connected by rotational springs. Discrete time transfer matrices of rigid bodies and rotational springs are used to analyze the dynamic characteristic of the beam, and the Riccati transform is used to improve the numerical stability of discrete time transfer matrix method of multibody system dynamics. A predictor-corrector method is used to improve the numerical accuracy of the Riccati-DT-TMM. Using the Riccati-DT-TMM in dynamics analysis, the global dynamics equations of the system are not needed and the computation time required increases linearly with the system’s number of degrees of freedom. Three numerical examples are given to validate the method for the dynamic simulation of a geometric nonlinear beam undergoing large overall motion.  相似文献   

14.
To consider large deformation problems in multibody system simulations afinite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates andtheir material derivatives are applied to represent both deformation andrigid body motion. The choice of nodal variables allows a fullynonlinear representation of rigid body motion and can provide the exactrigid body inertia in the case of large rotations. The methodology isespecially suited for but not limited to modeling of beams, cables andshells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler–Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.  相似文献   

15.
In constrained systems of rigid and flexible bodies, the gross rigid body motion and elastic deformation cannot be controlled independently because of the coupling between these two motions. A hybrid control method for suppressing the vibration of a geometrically nonlinear flexible multi-body system is proposed in this paper. This method utilizes both the passive and active control concepts. In the passive control strategy, flexible components in the system are manufactured from fiber-reinforced composite laminates which have high strength-to-weight and stiffness-to-weight ratios. On the other hand, the active control scheme used in this paper utilizes measurable velocity and acceleration signals to produce the command signals required to activate the actuator forces. A small number of sensors and controllers with constant gain factors are used in order to obtain a low-cost and simple control system. The generalized active control forces associated with the system generalized coordinates are developed using the virtual work and are written in terms of the coupled set of reference and elastic coordinates. The system differential equations of motion are developed using Lagrange's equation and the Jacobian matrix of the nonlinear algebraic constraint equations describing mechanical joints in the system is used to identify a set of independent generalized coordinates. The associated independent differential equations are identified and are written in the state space formulation. The characteristics of the proposed hybrid control are evaluated through computer simulations of a seven-body flexible vehicle. The performance characteristics of the hybrid control are also compared to the performance characteristics of the passive and active controls.  相似文献   

16.
Geometric stiffening of flexible link system with large overall motion   总被引:5,自引:0,他引:5  
In the conventional hybrid-coordinate formulation, the Cartesian deformation variables are employed with a linear Cauchy strain measure. It has been found that such modeling method fails to capture the motion-induced stiffness terms and provides erroneous dynamic results in case of high rotating speed. In this paper, geometric stiffening of flexible link system is investigated. Using a non-Cartesian deformation variable, the equations of motion of each link, which include the stiffening terms, are obtained based on the virtual power principle, and forward recursive formulation is employed to derive the equations of flexible link system. Relative generalized coordinates are employed to derive the equations of motion of the link system. Numerical examples are presented to investigate the stiffening effect on large overall motion as well as deformation of the flexible link system and to testify the accuracy and efficiency of the formulation.  相似文献   

17.
The opportunities of modeling and optimization of motion of elastic systems with distributed parameters are investigated. A regular integro-differential approach, which reduces a wide class of linear initialboundary value problems to a conditional minimization of non-negative quadratic functionals is developed, and a cost function of approximate solutions obtained is proposed. For longitudinal motions of a uniform straight elastic rod, the case of polynomial control of the motion of its end is considered. An algorithm of constructing an optimal control that steers the system to the state of a minimal mechanical energy at the final time instant. The parameters of the problem are adjusted so that the time of transition processes would be comparable with the interval, on which the motions are investigated. The analysis and comparison of the results obtained by using the method of integro-differential relations for a one-dimensional model of a thin elastic rod and a proposed approximate three-dimensional model of a prismatic beam.  相似文献   

18.
19.
In high precision equipment, the use of compliant mechanisms is favourable as elastic joints offer the advantages of low friction and no backlash. If the constraints in a compliant mechanism are not carefully dealt with, even small misalignments can lead to changes in natural frequencies and stiffnesses. Such unwanted behaviour can be avoided by applying exact constraint design, which implies that the mechanism should have exactly the required degrees of freedom and non-redundant constraints so that the system is kinematically and statically determinate. For this purpose, we propose a kinematic analysis using a finite element based multibody modelling approach. In compliant mechanisms, the system’s degrees of freedom are presented clearly from the analysis of a system in which the deformation modes with a low stiffness are free to deform while the deformation modes with a high stiffness are considered rigid. If the Jacobian matrix associated with the dependent coordinates is not full column or row rank, the system is under-constrained or over-constrained. The rank of this matrix is calculated from a singular value decomposition. For an under-constrained system, any motion in the mechanism that is not accounted for by the current set of degrees of freedom is visualised using data from the right singular matrix. For an over-constrained system, a statically indeterminate stress distribution is derived from the left singular matrix and is used to visualise the over-constraints. The analysis is exemplified for the design of a straight guiding mechanism, where under-constrained and over-constrained conditions are visualised clearly.  相似文献   

20.
Passenger cars, transit buses, railroad vehicles, off-highway trucks, earth moving equipment and construction machinery contain structural and light-fabrications (SALF) components that are prone to excessive vibration due to rough terrains and work-cycle loads’ excitations. SALF components are typically modeled as flexible components in the multibody system allowing the analysts to predict elastic deformation and hence the stress levels under different loading conditions. Including SALF component in the multibody system typically generates closed-kinematic loops. This paper presents an approach for integrating SALF modeling capabilities as a flexible body in a general-purpose multibody dynamics solver that is based on joint-coordinates formulation with the ability to handle closed-kinematic loops. The spatial algebra notation is employed in deriving the spatial multibody dynamics equations of motion. The system kinematic topology matrix is used to project the Cartesian quantities into the joint subspace, leading to a condensed set of nonlinear equations with minimum number of generalized coordinates. The proposed flexible body formulation utilizes the component mode synthesis approach to reduce the large number of finite element degrees of freedom to a small set of generalized modal coordinates. The resulting reduced flexible body model has two main characteristics: the stiffness matrix is constant while the mass matrix depends on the elastic modal coordinates. A consistent set of pre-computed inertia shape integrals are identified and used to update the modal mass matrix at each time step. The implementation of the component mode synthesis approach in a closed-loop recursive multibody formulation is presented. The kinematic equations are modified to include the effect of the flexible body modal elastic coordinates. Also, modified constraint equations that include the effect of flexibility at the joint connections and the necessary details of the Jacobian matrix are presented. Baumgarte stabilization approach is used to stabilize the constraint equations without using iterative schemes. A sample results for flexible body impeded in a closed system will be presented to demonstrate the above mentioned approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号