首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
采用轴向应变控制方法,在MTS809拉扭复合疲劳试验机上开展了HRB400EⅢ级钢筋母材及焊接接头的低周疲劳试验,获得了母材及焊接接头的低周疲劳性能,如循环应力响应特征、循环应力-应变关系以及寿命预测公式等.通过断口电镜扫描发现,HRB400EⅢ级钢筋焊接接头的裂纹萌生于试件表面,且存在多处裂纹源.研究结果表明,焊接接头与母材的低周疲劳寿命及微观断裂机理方面均存在明显差异,并从力学性能变化的角度对引起差异的原因进行了解释.  相似文献   

2.
GH80A镍合金电子束焊接接头旋转弯曲高周疲劳行为研究   总被引:1,自引:0,他引:1  
随着镍合金电子束焊接在工业中的大量应用,尤其是在航空发动机和燃气轮机等关键长寿命服役设备中的使用,有必要对镍合金电子束焊接接头的高周疲劳属性和断裂机理进行系统的分析研究。本文利用旋转弯曲高周疲劳试验机进行疲劳试验,获得了母材和焊接接头的应力-寿命(S-N)曲线和疲劳断口,同时利用扫描电镜(Scanning Electron Microscope,SEM)对疲劳断口进行了微观特征分析,确定了母材和焊接接头在不同应力幅下的疲劳裂纹萌生区和扩展区,分析了裂纹萌生区位置与应力幅的相互关系。最后,利用有限元分析了焊接接头热影响区微裂纹位置与大小对材料疲劳性能的影响。从现有的试验和模拟结果可以得到:1)母材和电子束焊接接头应力-寿命(S-N)曲线分布趋势一致,但焊接接头疲劳强度要低于母材,在靠近107周次时,两者疲劳强度差距最小;2)在高应力幅(低周疲劳寿命阶段)母材和焊接接头的疲劳裂纹均起源于试件表面并且都是多点萌生断裂,焊接接头疲劳断口位置位于焊接熔合区或热影响区;3)在低应力幅(高周疲劳寿命阶段)疲劳裂纹在试件次表面萌生,焊接接头疲劳断口位于热影响区或焊接母材靠近热影响区处;4) 通过有限元模拟发现微裂纹的存在有利于裂纹的扩展。在拉应力作用下,横向微裂纹更优于纵向裂纹沿着应力方向进行裂纹扩展;随着微裂纹尺寸增大,微裂纹间更易于相互贯通,形成更长的裂纹,从而降低了材料的疲劳性能。综上可知,电子束焊接仅仅影响材料的疲劳强度。疲劳断裂机理和母材一致都为穿晶解理断裂,疲劳裂纹萌生区域位置也和母材一样都受应力幅的直接影响。  相似文献   

3.
为了研究Q345qC钢材及焊接接头的低周疲劳性能,对母材及焊接试样在总应变为2.0%~5.0%的条件下进行低周疲劳试验.基于Coffin-Manson公式拟合两者的低周疲劳寿命预测曲线,结合单调拉伸试验结果,比较不同疲劳寿命预测模型的精度;通过断口电镜扫描分析焊接接头的裂纹萌生机理以及焊接缺陷对疲劳寿命的影响;用Miner损伤累积准则给出两者的低周疲劳损伤指标计算式.结果表明,在同一应变水平下,焊接接头疲劳寿命仅为母材的31%~50%;母材的循环响应特征为循环稳定,焊接接头为循环软化;母材及焊接接头在半寿命稳定循环状态下的耗能能力相近;考虑单调拉伸的Coffin-Manson公式,对两者低周、超低周疲劳寿命均可进行较精确的预测;焊接缺陷容易引起焊接接头萌生疲劳裂纹,使疲劳寿命显著降低.  相似文献   

4.
为获得厚壁钢桥墩的超低周疲劳裂纹萌生寿命,对多组厚壁钢桥墩进行数值模拟分析。采用钢材的混合强化模型预测厚壁钢桥墩在三种不同往复荷载作用下的滞回性能,并分别使用Ge模型中的局部损伤法与非局部损伤法得到不同网格尺寸下的钢桥墩超低周疲劳裂纹萌生寿命,然后使用Ge模型对厚壁钢桥墩的疲劳裂纹萌生寿命影响因素(翼缘宽厚比、试件通用长细比等)进行参数化分析。研究结果表明:混合强化模型能准确预测厚壁钢桥墩的滞回性能;Ge模型中的非局部损伤法能准确预测厚壁钢桥墩的超低周疲劳裂纹萌生寿命。最后基于裂纹萌生寿命的参数化分析结果,提出了预测钢桥墩超低周疲劳裂纹萌生寿命的经验公式。  相似文献   

5.
沥青路面的裂纹扩展及疲劳寿命对沥青路面的设计和维护具有重要意义。通过对三点弯曲疲劳试验的沥青混合料小梁在不同位置预切口,对不同类型裂纹的试件进行疲劳试验,并利用耦合的无单元伽辽金/有限元法,对试验过程进行数值模拟,利用广义Paris公式预测试件的疲劳寿命,并同试验结果进行了比较。结果显示.数值模拟和试验结果接近,可以应用于沥青路面的疲劳裂纹扩展模拟和寿命预测。  相似文献   

6.
复合型裂纹的扩展路径模拟及疲劳寿命预测   总被引:1,自引:0,他引:1  
针对二维裂纹稳态扩展,基于位移外推,通过最小二乘法拟合得到应力强度因子数值计算方法;利用最大周向应力准则判断裂纹扩展方向,并得到作为裂纹失稳扩展判据的等效应力强度因子;通过Paris准则得到疲劳寿命预测数值方法。基于ANSYS软件平台,根据上述理论通过APDL编程建立了裂纹扩展路径模拟及疲劳寿命预测模型。该模型可根据裂尖位置进行参数化建模及网格自动划分。将3个典型算例仿真结果与相应解析解或实验结果进行比较,验证了该方法的正确性,为裂纹扩展路径模拟及疲劳寿命预测提供了一种有效的技术手段。  相似文献   

7.
基于有限元的波纹钢腹板组合箱梁疲劳损伤分析   总被引:1,自引:1,他引:0  
针对波纹钢腹板组合箱梁(以下简称箱梁)的抗弯性能进行有限元分析,分析箱梁的静力位移、应力和应变结果,建立箱梁破坏损伤机理并得到应力薄弱点。同时,根据有限元分析结果,进行箱梁局部应力应变分析,得到箱梁不同水平下的疲劳寿命。最后,结合疲劳损伤和疲劳断裂理论进行箱梁的疲劳裂纹扩展行为及破坏过程和寿命预测研究,分析了正弦波疲劳荷载作用下箱梁中的钢腹板、PBL剪力连接件以及钢板翼缘等部件的疲劳裂纹萌生及寿命预测结果与试验结果吻合较好。研究表明:根据美国规范AASHTO2004中C类标准进行工程设计和疲劳寿命估算与试验符合较好,同时采用Palmgren-Miner线性累积损伤疲劳准则能有效地计算变幅疲劳载荷下箱梁的疲劳损伤及断裂破坏过程,为实际工程中箱梁疲劳性能设计提供参考。  相似文献   

8.
通过光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)等方法观察了Al-5.5Zn-2.5Mg高强铝合金材料的微观组织,并进行了拉伸性能与疲劳性能试验,分析其拉伸断裂和低周疲劳失效行为.结果表明:Al-5.5Zn-2.5Mg高强铝合金的力学性能与低周疲劳性能较好,拉伸强度达到479.4 MPa.当应力比R=-1,频率f=20 Hz,应变幅εa=0.8%时,低周疲劳寿命为630周,疲劳裂纹萌生于试件表面,且疲劳裂纹扩展区存在明显的疲劳条带.Al-5.5Zn-2.5Mg铝合金η’(MgZn2)析出相虽然在光学组织中呈现均匀弥散分布,但在TEM高倍组织中主要沿晶界析出,强化相粒子的平均直径约20 nm,晶界附近无沉淀析出带宽约100 nm.  相似文献   

9.
本文首先给出了当应力比 R=0、-1时,切口根部循环应变范围的近似计算公式。应用这些公式及估算疲劳寿命的局部应力—应变法中的基本假设,导出疲劳裂纹起始寿命的一般表达式;特别考虑到应力比的影响,以及疲劳裂纹起始寿命与拉伸性能间的关系。文献中的实验结果用来校核本文所提出的公式。最后,还给出了根据拉伸性能估算疲劳裂纹起始寿命的几个实例。  相似文献   

10.
高耸高层钢结构焊缝在风和地震作用下的疲劳裂纹萌生和扩展是一种危及结构安全甚至引起结构倒塌的钢结构重要破坏形式,已经引起国际土木工程领域的关心和重视.高耸高层钢结构焊缝多轴高周弹性应力疲劳和多轴低周塑性应变疲劳劣化机理和寿命预测的研究现状是:1)焊缝应力和应变演化过程分析;2)焊缝疲劳损伤表征;3)焊缝疲劳寿命预测与设计方法.在此基础上指出未来的主要研究方向,包括:1)焊缝多尺度应力和应变状态模拟方法;2)焊接残余应力场的产生机理、分布模式和松弛规律;3)焊缝等效疲劳损伤参量的数力学表征;4)焊缝疲劳劣化机理;5)焊缝疲劳寿命预测方法.研究结果可为高耸高层钢结构焊缝疲劳劣化机理与寿命预测研究提供参考.  相似文献   

11.
The low-cycle fatigue behavior of powder metallurgy Rene95 alloy containing surface inclusions was investigated by in-situ observation with scanning electron microscopy (SEM). The process of fatigue crack initiation and early stage of propagation behavior indicates that fatigue crack mainly occurs at the interface between the inclusion and the matrix. The effect of inclusion on the fatigue crack initiation and the early stage of crack growth was very obvious. The fatigue crack growth path in the matrix is similar to the shape of inclusion made on the basis of fatigue fracture image analysis. The empiric relation between the surface and inside crack growth length, near a surface inclusion, can be expressed. Therefore, the fatigue crack growth rate or life of P/M Rene95 alloy including the inclusions can be evaluated on the basis of the measurable surface crack length parameter. In addition, the effect of two inclusions on the fatigue crack initiation behavior was investigated by the in-situ observation with SEM.  相似文献   

12.
橡胶球铰疲劳裂纹扩展寿命预测   总被引:2,自引:1,他引:1  
通过橡胶纯剪试样疲劳裂纹扩展试验,得出了裂纹扩展速率与撕裂能之间的关系;以单位撕裂能范围为损伤参量,建立了复杂应力状态下的橡胶疲劳裂纹扩展寿命预测模型.基于ABAQUS有限元结构分析和橡胶材料等效应力计算方法,得出橡胶球铰在疲劳载荷下的单位撕裂能范围;对橡胶球铰的疲劳裂纹扩展寿命进行分析预测,并通过产品台架疲劳实验进行验证,结果表明橡胶球铰经过200万次疲劳试验后无明显裂纹,没有发现失效破坏,与寿命预测值基本吻合.  相似文献   

13.
Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were characterized by using an optical microscope(OM), a scanning electron microscope(SEM), and a transmission electron microscope(TEM). The results indicated that the maximum residual compressive stress was at about 1 mm from the shocking spot center, where the residual compressive stress was slightly lower. High density tangling dislocations, dislocation walls, and dislocation cells in the microstructure of the specimens treated with LSP effectively prevented fatigue cracks propagation. The fatigue life was roughly twice as long as that of the specimens without LSP. The fatigue crack initiation(FCI) in specimens treated with LSP was observed in the lateral section and the subsurface simultaneously. The fatigue striation in the fracture treated with LSP was narrower than that in the untreated specimens. Moreover, dimples with tear ridges were found in the fatigued zones of the LSP treated specimens, which would be caused by severe plastic deformation.  相似文献   

14.
Cavitation erosion is an especially destructive and complex phenomenon. To understand its basic mechanism, the fatigue process of materials during cavitation erosion was investigated by numerical simulation technology. The loading spectrum used was generated by a spark-discharged electrode. Initiation crack life and true stress amplitude was used to explain the cavitation failure period and damage mechanism. The computational results indicated that the components of different materials exhibited various fatigue lives under the same external conditions. When the groove depth was extended, the initiation crack life decreased rapidly, while the true stress amplitude was increased simultaneously. This gave an important explanation to the accelerating material loss rate during cavitation erosion. However, when the groove depth was fixed and the length varied, the fatigue life became complex, more fluctuant than that happened in depth. The results also indicate that the fatigue effect of cavitation plays an important role in contributing to the formation and propagation of characteristic pits.  相似文献   

15.
为研究结构钢圆杆的疲劳破坏模型,以结构钢的椭球面断裂模型为开裂判据,由结构钢圆杆疲劳裂纹的裂尖真实应力场,计算出结构钢圆杆疲劳裂纹的失稳扩展面积、稳定扩展面积和稳定扩展长度.基于结构钢疲劳裂纹随加载次数加速扩展的试验事实,假定结构钢圆杆的疲劳裂纹稳定扩展速率是循环加载次数的单调递增幂函数,即双对数坐标系下结构钢圆杆的疲劳裂纹稳定扩展速率和循环加载次数为单调递增线性函数,积分后得到结构钢圆杆的疲劳裂纹稳定扩展长度和疲劳寿命间的函数表达式,导出结构钢圆杆的疲劳破坏模型.建议的结构钢圆杆的疲劳破坏模型表明,结构钢圆杆的疲劳寿命是名义最大应力、相对应力幅、初始裂纹位置和初始裂纹长度的复杂函数,不能简单化为仅是应力幅的函数.对Q345B圆钢杆进行了常幅循环应力疲劳试验,结果表明,Q345B圆钢杆的疲劳寿命随相对应力幅和名义最大应力的增加而降低.根据Q345B圆钢杆的疲劳试验结果,标定了其疲劳破坏模型参数,验证了建议的疲劳破坏模型精度.  相似文献   

16.
对8根模拟锈蚀钢筋混凝土梁进行了高周疲劳试验,研究和探讨了模拟锈蚀钢筋混凝土梁的疲劳性能。结果表明,交变荷载作用下试件的斜裂纹出现并迅速发展成主裂缝;模拟锈蚀钢筋混凝土梁多在端部发生剪切疲劳破坏;试件的挠度发展、裂缝分布与破坏形态密切相关;随循环次数增加,锈蚀主筋的最大、最小应力不断增长,应力幅值基本不变;混凝土的最大、最小压应变快速增长,应变幅值平稳增长;试件的疲劳寿命具有较大的离散型;同等条件下,锈蚀钢筋混凝土梁的疲劳寿命往往比锈蚀钢筋的轴向拉伸疲劳寿命长。  相似文献   

17.
风荷载的非高斯性对风机结构疲劳损伤的影响   总被引:2,自引:1,他引:1  
为分析非高斯风荷载作用下风机结构的疲劳寿命,在穿越模型基础上,根据Monte Carlo模拟生成某典型风机正常风速条件下,高斯、非高斯硬化和软化3种风场的风速时程,用于分析风场的非高斯性对风机结构疲劳损伤的影响.由叶片的气动模型和多体动力,计算出风机的动力响应,并对响应的时域特性进行分析.基于线性损伤累积和线性裂纹扩展理论,对裂纹形成寿命和裂纹扩展寿命进行详细讨论.结果表明:不同概率特性风场作用下风机动力响应的最大值有所不同,且风机响应的非高斯性较风场的非高斯性减弱;在年平均风速较小地区,风场的非高斯性对风机疲劳寿命影响较小;但随着年平均风速的增大,非高斯性对疲劳寿命的影响显著增大,当年平均风速为7 m/s和9 m/s时,相较于高斯风场,软化过程的裂纹形成寿命减小约10%.因此,在年平均风速较大地区,需要考虑风场的软化特性对风机结构疲劳损伤的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号