首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
For an ordered set W = {w1, w2,…, wk} of vertices and a vertex v in a connected graph G, the (metric) representation of v with respect to W is the k-vector r(v | W) = (d(v, w1), d(v, w2),…, d(v, wk)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations. A new sharp lower bound for the dimension of a graph G in terms of its maximum degree is presented.

A resolving set of minimum cardinality is a basis for G and the number of vertices in a basis is its (metric) dimension dim(G). A resolving set S of G is a minimal resolving set if no proper subset of S is a resolving set. The maximum cardinality of a minimal resolving set is the upper dimension dim+(G). The resolving number res(G) of a connected graph G is the minimum k such that every k-set W of vertices of G is also a resolving set of G. Then 1 ≤ dim(G) ≤ dim+(G) ≤ res(G) ≤ n − 1 for every nontrivial connected graph G of order n. It is shown that dim+(G) = res(G) = n − 1 if and only if G = Kn, while dim+(G) = res(G) = 2 if and only if G is a path of order at least 4 or an odd cycle.

The resolving numbers and upper dimensions of some well-known graphs are determined. It is shown that for every pair a, b of integers with 2 ≤ ab, there exists a connected graph G with dim(G) = dim+(G) = a and res(G) = b. Also, for every positive integer N, there exists a connected graph G with res(G) − dim+(G) ≥ N and dim+(G) − dim(G) ≥ N.  相似文献   


2.
Given a digraph (or an undirected graph) G=(V,E) with a set V of vertices v with nonnegative real costs w(v), and a set E of edges and a positive integer k, we deal with the problem of finding a minimum cost subset SV such that, for each vertex vVS, there are k vertex-disjoint paths from S to v. In this paper, we show that the problem can be solved by a greedy algorithm in time in a digraph (or in time in an undirected graph), where n=|V| and m=|E|. Based on this, given a digraph and two integers k and ℓ, we also give a polynomial time algorithm for finding a minimum cost subset SV such that for each vertex vVS, there are k vertex-disjoint paths from S to v as well as ℓ vertex-disjoint paths from v to S.  相似文献   

3.
This paper presents an efficient algorithm for enumerating all minimal a-b separators separating given non-adjacent vertices a and b in an undirected connected simple graph G = (V, E), Our algorithm requires O(n3Rab) time, which improves the known result of O(n4Rab) time for solving this problem, where ¦V¦= n and Rab is the number of minimal a-b separators. The algorithm can be generalized for enumerating all minimal A-B separators that separate non-adjacent vertex sets A, B < V, and it requires O(n2(nnAnb)RAB) time in this case, where na = ¦A¦, nB = ¦B¦ and rAB is the number of all minimal AB separators. Using the algorithm above as a routine, an efficient algorithm for enumerating all minimal separators of G separating G into at least two connected components is constructed. The algorithm runs in time O(n3R+Σ + n4RΣ), which improves the known result of O(n6RΣ) time, where Rσ is the number of all minimal separators of G and RΣR+Σ = ∑1i, vj) ERvivj n − 1)/2 − m)RΣ. Efficient parallelization of these algorithms is also discussed. It is shown that the first algorithm requires at most O((n/log n)Rab) time and the second one runs in time O((n/log n)R+Σ+n log nRΣ) on a CREW PRAM with O(n3) processors.  相似文献   

4.
For a system consisting of a set of sensors S = {S1, S2, …, Sm} and a set of objects O = {O1, O2, …, On}, there are information constraints given by a relation R S × O such that (Si, Oj) R if and only if Si is capable of detecting Oj. Each (Si, Oj) R is assigned a confidence factor (a positive real number) which is either explicitly given or can be efficiently computed. Given that a subset of sensors have detected obstacles, the detection problem is to identify a subset H O with the maximum confidence value. The computational complexity of the detection problem, which depends on the nature of the confidence factor and the information constraints, is the main focus of this paper. This problem exhibits a myriad of complexity levels ranging from a worst-case exponential (in n) lower bound in a general case to an O(m + n) time solvability. We show that the following simple versions of a detection problem are computationally intractable: (a) deterministic formulation, where confidence factors are either 0 or 1; (b) uniform formulation where (Si, Oj) R, for all Si S, Oj O; (c) decomposable systems under multiplication operation. We then show that the following versions are solvable in polynomial (in n) time: (a) single object detection; (b) probabilistically independent detection; (c) decomposable systems under additive and nonfractional multiplicative measures; and (d) matroid systems.  相似文献   

5.
Let V = v1, v2, …, vm and W = w1, w2, …, wn be two linearly separable convex polygons whose vertices are specified by their cartesian coordinates in order. An algorithm with O(m + n) worst-case time complexity is described for finding the minimum euclidean distance between a vertex v1 in V and a vertex wj in W. It is also shown that the algorithm is optimal.  相似文献   

6.
ANTS: Agents on Networks, Trees, and Subgraphs   总被引:1,自引:0,他引:1  
Efficient exploration of large networks is a central issue in data mining and network maintenance applications. In most existing work there is a distinction between the active ‘searcher’ which both executes the algorithm and holds the memory and the passive ‘searched graph’ over which the searcher has no control at all. Large dynamic networks like the Internet, where the nodes are powerful computers and the links have narrow bandwidth and are heavily-loaded, call for a different paradigm, in which a noncentralized group of one or more lightweight autonomous agents traverse the network in a completely distributed and parallelizable way. Potential advantages of such a paradigm would be fault tolerance against network and agent failures, and reduced load on the busy nodes due to the small amount of memory and computing resources required by the agent in each node. Algorithms for network covering based on this paradigm could be used in today’s Internet as a support for data mining and network control algorithms. Recently, a vertex ant walk ( ) method has been suggested [I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Ann. Math. Artificial Intelligence 24 (1998) 211–223] for searching an undirected, connected graph by an a(ge)nt that walks along the edges of the graph, occasionally leaving ‘pheromone’ traces at nodes, and using those traces to guide its exploration. It was shown there that the ant can cover a static graph within time nd, where n is the number of vertices and d the diameter of the graph. In this work we further investigate the performance of the method on dynamic graphs, where edges may appear or disappear during the search process. In particular we prove that (a) if a certain spanning subgraph S is stable during the period of covering, then the method is guaranteed to cover the graph within time nds, where ds is the diameter of S, and (b) if a failure occurs on each edge with probability p, then the expected cover time is bounded from above by nd((logΔ/log(1/p))+((1+p)/(1−p))), where Δ is the maximum vertex degree in the graph. We also show that (c) if G is a static tree then it is covered within time 2n.  相似文献   

7.
In this paper we propose a limit characterization of the behaviour of classes of graphs with respect to their number of spanning trees. Let {Gn} be a sequence of graphs G0,G1,G2,… that belong to a particular class. We consider graphs of the form KnGn that result from the complete graph Kn after removing a set of edges that span Gn. We study the spanning tree behaviour of the sequence {KnGn} when n→∞ and the number of edges of Gn scales according to n. More specifically, we define the spanning tree indicator ({Gn}), a quantity that characterizes the spanning tree behaviour of {KnGn}. We derive closed formulas for the spanning tree indicators for certain well-known classes of graphs. Finally, we demonstrate that the indicator can be used to compare the spanning tree behaviour of different classes of graphs (even when their members never happen to have the same number of edges).  相似文献   

8.
Let x be an infinite word on a finite alphabet A. For each position n, the separator of x at n is the smallest factor of x which begins at index n and that does not appear before in x. Let Sx be the function such that Sx(n) is the length of the separator of x at index n if it exists and otherwise 0.

We consider the problem of computing Sx in the case where x is generated by iterating a morphism σ : A* → A*. We prove the following theorem:  相似文献   


9.
A graph G was defined in [16] as P4-reducible, if no vertex in G belongs to more than one chordless path on four vertices or P4. A graph G is defined in [15] as P4-sparse if no set of five vertices induces more than one P4, in G. P4-sparse graphs generalize both P4-reducible and the well known class of p4-free graphs or cographs. In an extended abstract in [11] the first author introduced a method using the modular decomposition tree of a graph as the framework for the resolution of algorithmic problems. This method was applied to the study of P4-sparse and extended P4-sparse graphs.

In this paper, we begin by presenting the complete information about the method used in [11]. We propose a unique tree representation of P4-sparse and a unique tree representation of P4-reducible graphs leading to a simple linear recognition algorithm for both classes of graphs. In this way we simplify and unify the solutions for these problems, presented in [16–19]. The tree representation of an n-vertex P4-sparse or a P4-reducible graph is the key for obtaining O(n) time algorithms for the weighted version of classical optimization problems solved in [20]. These problems are NP-complete on general graphs.

Finally, by relaxing the restriction concerning the exclusion of the C5 cycles from P4-sparse and P4-reducible graphs, we introduce the class of the extended P4-sparse and the class of the extendedP4-reducible graphs. We then show that a minimal amount of additional work suffices for extending most of our algorithms to these new classes of graphs.  相似文献   


10.
We present particle simulations of natural convection of a symmetrical, nonlinear, three-dimensional cavity flow problem. Qualitative studies are made in an enclosure with localized heating. The assumption is that particles interact locally by means of a compensating Lennard-Jones type force F, whose magnitude is given by −G/rp + H/rq.

In this formula, the parameters G, H, p, q depend upon the nature of the interacting particles and r is the distance between two particles. We also consider the system to be under the influence of gravity. Assuming that there are n particles, the equations relating position, velocity and acceleration at time tk = kΔt, K = 0, 1, 2, …, are solved simultaneously using the “leap-frog” formulas. The basic formulas relating force and acceleration are Newton's dynamical equations Fi,k = miai,k, I = 1, 2, 3, …, n, where mi is the mass of the ith particle.

Extensive and varied computations on a CRAY X - MP/24 are described and discussed, and comparisons are made with the results of others.  相似文献   


11.
Let S = {C1, …, Cm} be a set of clauses in the propositional calculus and let n denote the number of variables appearing these clauses. We present and O(mn) time algorithm to test whether S can be renamed as a Horn set.  相似文献   

12.
Let H be a fixed undirected graph. An H-colouring of an undirected graph G is a homomorphism from G to H. If the vertices of G are partially ordered then there is a generic non-deterministic greedy algorithm which computes all lexicographically first maximal H-colourable subgraphs of G. We show that the complexity of deciding whether a given vertex of G is in a lexicographically first maximal H-colourable subgraph of G is NP-complete, if H is bipartite, and Σ2p-complete, if H is non-bipartite. This result complements Hell and Ne et il's seminal dichotomy result that the standard H-colouring problem is in P, if H is bipartite, and NP-complete, if H is non-bipartite. Our proofs use the basic techniques established by Hell and Ne et il, combinatorially adapted to our scenario.  相似文献   

13.
Let G=(V,E) be an undirected graph and C a subset of vertices. If the sets Br(v)∩C, vV (respectively, vVC), are all nonempty and different, where Br(v) denotes the set of all points within distance r from v, we call C an r-identifying code (respectively, an r-locating-dominating code). We prove that, given a graph G and an integer k, the decision problem of the existence of an r-identifying code, or of an r-locating-dominating code, of size at most k in G, is NP-complete for any r.  相似文献   

14.
Given a set of n points on the plane, a symmetric furthest-neighbor (SFN) pair of points p, q is one such that both p and q are furthest from each other among the points in . A pair of points is antipodal if it admits parallel lines of support. In this paper it is shown that a SFN pair of is both a set of extreme points of and an antipodal pair of . It is also shown that an asymmetric furthest-neighbor (ASFN) pair is not necessarily antipodal. Furthermore, if is such that no two distances are equal, it is shown that as many as, and no more than, n/2 pairs of points are SFN pairs. A polygon is unimodal if for each vertex pk, k = 1,…,n the distance function defined by the euclidean distance between pk and the remaining vertices (traversed in order) contains only one local maximum. The fastest existing algorithms for computing all the ASFN or SFN pairs of either a set of points, a simple polygon, or a convex polygon, require 0(n log n) running time. It is shown that the above results lead to an 0(n) algorithm for computing all the SFN pairs of vertices of a unimodal polygon.  相似文献   

15.
Two parallel algorithms for finding minimum spanning forest (MSF) of a weighted undirected graph on hypercube computers, consisting of a fixed number of processors, are presented. One algorithm is suited for sparse graphs, the other for dense graphs. Our design strategy is based on successive elimination of non-MSF edges. The input graph is partitioned equally among different processors, which then repeatedly eliminate non-MSF edges and merge results to gradually construct the desired MSF of the entire graph. Low communication overhead is achieved by restricting the message-flow to between the neighboring processors in the hypercube topology. The correctness of our approach is due to a theorem which states that with total-ordered edges, if an edge of an arbitrary subgraph does not belong to its MSF, then it does not belong to the MSF of the entire graph. For a graph of n vertices and m edges, our first algorithm finds an MSF in O(m log m)/p) time using p processors for p ≤ (mlog m)/n(1+log(m/n)). The second algorithm, efficient for dense graphs, requires O(n2/p) time for pn/log n.  相似文献   

16.
Newton's and Laguerre's methods can be used to concurrently refine all separated zeros of a polynomial P(z). This paper analyses the rate convergence of both procedures, and its implication on the attainable number n of correct figures. In two special cases the number m of iterations required to reach an accuracy η = 10n is shown to grow as logλ n, where λ = 3 for Newton's and λ = 4 for Laguerre's. In the general case m is shown to grow linearly with n for both procedures. An assessment of the efficiency of the two methods is also given, by evaluating the computational complexity of operations in circular arithmetic, and the efficiency indices of the two iterative schemes.  相似文献   

17.
We consider the basic problem of searching for an unknown m-bit number by asking the minimum possible number of yes–no questions, when up to a finite number e of the answers may be erroneous. In case the (i+1)th question is adaptively asked after receiving the answer to the ith question, the problem was posed by Ulam and Rényi and is strictly related to Berlekamp's theory of error correcting communication with noiseless feedback. Conversely, in the fully non-adaptive model when all questions are asked before knowing any answer, the problem amounts to finding a shortest e-error correcting code. Let qe(m) be the smallest integer q satisfying Berlekamps bound . Then at least qe(m) questions are necessary, in the adaptive, as well as in the non-adaptive model. In the fully adaptive case, optimal searching strategies using exactly qe(m) questions always exist up to finitely many exceptional m's. At the opposite non-adaptive case, searching strategies with exactly qe(m) questions—or equivalently, e-error correcting codes with 2m codewords of length qe(m)—are rather the exception, already for e=2, and are generally not known to exist for e>2. In this paper, for each e>1 and all sufficiently large m, we exhibit searching strategies that use a first batch of m non-adaptive questions and then, only depending on the answers to these m questions, a second batch of qe(m)−m non-adaptive questions. These strategies are automatically optimal. Since even in the fully adaptive case, qe(m)−1 questions do not suffice to find the unknown number, and qe(m) questions generally do not suffice in the non-adaptive case, the results of our paper provide e fault tolerant searching strategies with minimum adaptiveness and minimum number of tests.  相似文献   

18.
A c-vertex-ranking of a graph G for a positive integer c is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels >i leaves connected components, each having at most c vertices with label i. A c-vertex-ranking is optimal if the number of labels used is as small as possible. We present sequential and parallel algorithms to find an optimal c-vertex-ranking of a partial k-tree, that is, a graph of treewidth bounded by a fixed integer k. The sequential algorithm takes polynomial-time for any positive integer c. The parallel algorithm takes O(log n) parallel time using a polynomial number of processors on the common CRCW PRAM, where n is the number of vertices in G.  相似文献   

19.
In this paper, we obtain some new sufficient conditions for the existence of nontrivial m-periodic solutions of the following nonlinear difference equation
by using the critical point method, where f: Z × R → R is continuous in the second variable, m ≥ 2 is a given positive integer, pn+m = pn for any n  Z and f(t + m, z) = f(t, z) for any (t, z)  Z × R, (−1)δ = −1 and δ > 0.  相似文献   

20.
We show that the notoriously difficult problem of finding and reporting the smallest number of vertex-disjoint paths that cover the vertices of a graph can be solved time- and work-optimally for cographs. Our result implies that for this class of graphs the task of finding a Hamiltonian path can be solved time- and work-optimally in parallel.

It was open for more than 10 years to find a time- and work-optimal parallel solution for this important problem. Our contribution is to offer an optimal solution to this important problem. We begin by showing that any algorithm that solves an instance of size n of the problem must take Ω(log n) time on the CREW, even if an infinite number of processors are available. We then go on to show that this time lower bound is tight by devising an EREW algorithm that, given an n-vertex cograph G represented by its cotree, finds and reports all the paths in a minimum path cover in O(log n) time using n/log n processors.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号