首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we review mechanoregulatory roles for perlecan in load-bearing connective tissues. Perlecan facilitates the co-acervation of tropoelastin and assembly of elastic microfibrils in translamellar cross-bridges which, together with fibrillin and elastin stabilise the extracellular matrix of the intervertebral disc annulus fibrosus. Pericellular perlecan interacts with collagen VI and XI to define and stabilize this matrix compartment which has a strategic position facilitating two-way cell-matrix communication between the cell and its wider extracellular matrix. Cues from the extracellular matrix are fed through this pericellular matrix back to the chondrocyte, allowing it to perceive and respond to subtle microenvironmental changes to regulate tissue homeostasis. Thus perlecan plays a key regulatory role in chondrocyte metabolism, and in chondrocyte differentiation. Perlecan acts as a transport proteoglycan carrying poorly soluble, lipid-modified proteins such as the Wnt or Hedgehog families facilitating the establishment of morphogen gradients that drive tissue morphogenesis. Cell surface perlecan on endothelial cells or osteocytes acts as a flow sensor in blood and the lacunar canalicular fluid providing feedback cues to smooth muscle cells regulating vascular tone and blood pressure, and the regulation of bone metabolism by osteocytes highlighting perlecan’s multifaceted roles in load-bearing connective tissues.  相似文献   

2.
3.
The human adenovirus type 5 (HAdV5) infects epithelial cells of the upper and lower respiratory tract. The virus causes lysis of infected cells and thus enables spread of progeny virions to neighboring cells for the next round of infection. The mechanism of adenovirus virion egress across the nuclear barrier is not known. The human adenovirus death protein (ADP) facilitates the release of virions from infected cells and has been hypothesized to cause membrane damage. Here, we set out to answer whether ADP does indeed increase nuclear membrane damage. We analyzed the nuclear envelope morphology using a combination of fluorescence and state-of-the-art electron microscopy techniques, including serial block-face scanning electron microscopy and electron cryo-tomography of focused ion beam-milled cells. We report multiple destabilization phenotypes of the nuclear envelope in HAdV5 infection. These include reduction of lamin A/C at the nuclear envelope, large-scale membrane invaginations, alterations in double membrane separation distance and small-scale membrane protrusions. Additionally, we measured increased nuclear membrane permeability and detected nuclear envelope lesions under cryoconditions. Unexpectedly, and in contrast to previous hypotheses, ADP did not have an effect on lamin A/C reduction or nuclear permeability.  相似文献   

4.
The nuclear factor of activated T cells 5 (NFAT5) is well known for its sensitivity to cellular osmolarity changes, such as in the kidney medulla. Accumulated evidence indicates that NFAT5 is also a sensitive factor to stress signals caused by non-hypertonic stimuli such as heat shock, biomechanical stretch stress, ischaemia, infection, etc. These osmolality-related and -unrelated stimuli can induce NFAT5 upregulation, activation and nuclear accumulation, leading to its protective role against various detrimental effects. However, dysregulation of NFAT5 expression may cause pathological conditions in different tissues, leading to a variety of diseases. These protective or pathogenic effects of NFAT5 are dictated by the regulation of its target gene expression and activation of its signalling pathways. Recent studies have found a number of kinases that participate in the phosphorylation/activation of NFAT5 and related signal proteins. Thus, this review will focus on the NFAT5-mediated signal transduction pathways. As for the stimuli that upregulate NFAT5, in addition to the stresses caused by hyperosmotic and non-hyperosmotic environments, other factors such as miRNA, long non-coding RNA, epigenetic modification and viral infection also play an important role in regulating NFAT5 expression; thus, the discussion in this regard is another focus of this review. As the heart, unlike the kidneys, is not normally exposed to hypertonic environments, studies on NFAT5-mediated cardiovascular diseases are just emerging and rapidly progressing. Therefore, we have also added a review on the progress made in this field of research.  相似文献   

5.
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.  相似文献   

6.
The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex is localized within the nuclear envelope and consists of SUN (Sad1/UNc84 homology domain-containing) proteins located in the inner nuclear membrane and KASH (Klarsicht/Anc1/Syne1 homology domain-containing) proteins located in the outer nuclear membrane, hence linking nuclear with cytoplasmic structures. While the nucleoplasm-facing side acts as a key player for correct pairing of homolog chromosomes and rapid chromosome movements during meiosis, the cytoplasm-facing side plays a pivotal role for sperm head development and proper acrosome formation during spermiogenesis. A further complex present in spermatozoa is involved in head-to-tail coupling. An intact LINC complex is crucial for the production of fertile sperm, as mutations in genes encoding for complex proteins are known to be associated with male subfertility in both mice and men. The present review provides a comprehensive overview on our current knowledge of LINC complex subtypes present in germ cells and its central role for male reproduction. Future studies on distinct LINC complex components are an absolute requirement to improve the diagnosis of idiopathic male factor infertility and the outcome of assisted reproduction.  相似文献   

7.
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer’s disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.  相似文献   

8.
In eukaryotic cells, the nucleus houses the genomic material of the cell. The physical properties of the nucleus and its ability to sense external mechanical cues are tightly linked to the regulation of cellular events, such as gene expression. Nuclear mechanics and morphology are altered in many diseases such as cancer and premature ageing syndromes. Therefore, it is important to understand how different components contribute to nuclear processes, organisation and mechanics, and how they are misregulated in disease. Although, over the years, studies have focused on the nuclear lamina—a mesh of intermediate filament proteins residing between the chromatin and the nuclear membrane—there is growing evidence that chromatin structure and factors that regulate chromatin organisation are essential contributors to the physical properties of the nucleus. Here, we review the main structural components that contribute to the mechanical properties of the nucleus, with particular emphasis on chromatin structure. We also provide an example of how nuclear stiffness can both impact and be affected by cellular processes such as DNA damage and repair.  相似文献   

9.
Ku is a predominantly nuclear protein that functions as a DNA double-strand-break (DSB) binding protein and regulatory subunit of the DNA-dependent protein kinase (DNA-PK). DNA-PK is involved in synapsis and remodeling of broken DNA ends during nonhomologous end-joining (NHEJ) of DNA DSBs. It has also recently been demonstrated that Ku plays roles in cytoplasmic and membrane processes, namely: interaction with matrix metalloproteinase 9, acting as a co-receptor for parvoviral infection, and also interacting with cell polarity protein, Par3. We present a method for creating stable expression of Ku-eGFP in CHO cells and extend the procedure to purify Ku-eGFP for in vitro assaying. We demonstrated that Ku-eGFP localizes to the nucleus of HeLa cells upon microinjection into the cytoplasm as well as localizing to laser induced DNA damage. We also characterized the diffusional dynamics of Ku in the nucleus and in the cytoplasm using fluorescence correlation spectroscopy (FCS). The FCS data suggest that whereas the majority of Ku (70%) in the nucleus is mobile and freely diffusing, in a cellular context, there also exists a significant slow process fraction (30%). Strikingly, in the cytoplasm, this immobile/slow moving fraction is even more pronounced (45%).  相似文献   

10.
Actin polymerization is a fundamental cellular process regulating immune cell functions and the immune response. The Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor, which is exclusively expressed in hematopoietic cells, where it plays a key regulatory role in cytoskeletal dynamics. WASp interacting protein (WIP) was first discovered as the binding partner of WASp, through the use of the yeast two hybrid system. WIP was later identified as a chaperone of WASp, necessary for its stability. Mutations occurring at the WASp homology 1 domain (WH1), which serves as the WIP binding site, were found to cause the Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). WAS manifests as an immune deficiency characterized by eczema, thrombocytopenia, recurrent infections, and hematopoietic malignancies, demonstrating the importance of WIP for WASp complex formation and for a proper immune response. WIP deficiency was found to lead to different abnormalities in the activity of various lymphocytes, suggesting differential cell-dependent roles for WIP. Additionally, WIP deficiency causes cellular abnormalities not found in WASp-deficient cells, indicating that WIP fulfills roles beyond stabilizing WASp. Indeed, WIP was shown to interact with various binding partners, including the signaling proteins Nck, CrkL and cortactin. Recent studies have demonstrated that WIP also takes part in non immune cellular processes such as cancer invasion and metastasis, in addition to cell subversion by intracellular pathogens. Understanding of numerous functions of WIP can enhance our current understanding of activation and function of immune and other cell types.  相似文献   

11.
Apoptosis, or programmed cell death, is a form of cell suicide that is extremely important for ridding the body of cells that are no longer required, to protect the body against hazardous cells, such as cancerous ones, and to promote tissue morphogenesis during animal development. Upon reception of a death stimulus, the doomed cell activates biochemical pathways that eventually converge on the activation of dedicated enzymes, caspases. Numerous pieces of information on the biochemical control of the process have been gathered, from the successive events of caspase activation to the identification of their targets, such as lamins, which constitute the nuclear skeleton. Yet, evidence from multiple systems now shows that apoptosis is also a mechanical process, which may even ultimately impinge on the morphogenesis of the surrounding tissues. This mechanical role relies on dramatic actomyosin cytoskeleton remodelling, and on its coupling with the nucleus before nucleus fragmentation. Here, we provide an overview of apoptosis before describing how apoptotic forces could combine with selective caspase-dependent proteolysis to orchestrate nucleus destruction.  相似文献   

12.
13.
14.
A transfection vector based on a peptide dendrimer ( 1 ) has been developed and its abilities for DNA binding and transport have been investigated. By attaching a fluorophore to the vector system ( 1* ), several steps in the transfection process could be monitored directly. As DLS and AFM studies showed, the labeled vector 1* condensed DNA into tightly packed aggregates able to enter eukaryotic cells. Co-localization experiments revealed that the ligand/plasmid complex is taken up by the endosomal pathway followed by an endosomal escape or lysosomal degradation. Afterwards, the plasmid DNA seems to enter the nucleus due to a breakdown of the nuclear envelope during mitosis, as only cells that have recently undergone mitosis showed H2B-GFP expression.  相似文献   

15.
硫酸乙酰肝素(HS)是由多个硫酸化结构的二糖单位重复形成的线型多糖,并以共价键形式与核心蛋白质连接形成硫酸乙酰肝素蛋白聚糖,而硫酸乙酰肝素2-O-硫酸基转移酶(Hs2st)为硫酸乙酰肝素多糖链硫酸化修饰的主要硫酸基转移酶,它将硫酸基团转移至L-艾杜糖残基的C2位。研究表明,HS的2-O-硫酸化对于HS与众多生长因子或受体进行相互作用是很重要的。缺乏功能性酶Hs2st的胚胎只能存活至出生前,临产时会由于无法形成完整的肾脏而死亡。这种致命性暗示了HS的2-O-硫酸化在小鼠胚胎发育过程中有着重要的作用。从形态学和分子水平上对Hs2st在小鼠胚胎发育过程中的重要性及其在肝素/HS合成过程中的作用进行了综述。  相似文献   

16.
The life processes of an eukaryotic cell are guided by its nucleus. In addition to the genetic material, the cellular nucleus contains many proteins located at its different compartments, called subnuclear locations. Information of their localization in a nucleus is indispensable for the in-depth study of system biology because, in addition to helping determine their functions, it can provide illuminative insights of how and in what kind of microenvironments these subnuclear proteins are interacting with each other and with other molecules. Facing the deluge of protein sequences generated in the post-genomic age, we are challenged to develop an automated method for fast and effectively annotating the subnuclear locations of numerous newly found nuclear protein sequences. In view of this, a new classifier, called Nuc-PLoc, has been developed that can be used to identify nuclear proteins among the following nine subnuclear locations: (1) chromatin, (2) heterochromatin, (3) nuclear envelope, (4) nuclear matrix, (5) nuclear pore complex, (6) nuclear speckle, (7) nucleolus, (8) nucleoplasm and (9) nuclear promyelocytic leukaemia (PML) body. Nuc-PLoc is featured by an ensemble classifier formed by fusing the evolution information of a protein and its pseudo-amino acid composition. The overall jackknife cross-validation accuracy obtained by Nuc-PLoc is significantly higher than those by the existing methods on the same benchmark data set through the same testing procedure. As a user-friendly web-server, Nuc-PLoc is freely accessible to the public at http://chou.med.harvard.edu/bioinf/Nuc-PLoc.  相似文献   

17.
The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.  相似文献   

18.
Osteoclasts differentiate from hematopoietic cells and resorb the bone in response to various signals, some of which are received directly from noncellular elements of the bone. In vitro, adherence to the bone triggers the reduction of cell–cell fusion events between osteoclasts and the activation of osteoclasts to form unusual dynamic cytoskeletal and membrane structures that are required for degrading the bone. Integrins on the surface of osteoclasts are known to receive regulatory signals from the bone matrix. Regulation of the availability of these signals is accomplished by enzymatic alterations of the bone matrix by protease activity and phosphorylation/dephosphorylation events. Other membrane receptors are present in osteoclasts and may interact with as yet unidentified signals in the bone. Bone mineral has been shown to have regulatory effects on osteoclasts, and osteoclast activity is also directly modulated by mechanical stress. As understanding of how osteoclasts and other bone cells interact with the bone has emerged, increasingly sophisticated efforts have been made to create bone biomimetics that reproduce both the structural properties of the bone and the bone’s ability to regulate osteoclasts and other bone cells. A more complete understanding of the interactions between osteoclasts and the bone may lead to new strategies for the treatment of bone diseases and the production of bone biomimetics to repair defects.  相似文献   

19.
The discovery of Lgr5+ intestinal stem cells (ISCs) triggered a breakthrough in the field of ISC research. Lgr5+ ISCs maintain the homeostasis of the intestinal epithelium in the steady state, while these cells are susceptible to epithelial damage induced by chemicals, pathogens, or irradiation. During the regeneration process of the intestinal epithelium, more quiescent +4 stem cells and short-lived transit-amplifying (TA) progenitor cells residing above Lgr5+ ISCs undergo dedifferentiation and act as stem-like cells. In addition, several recent reports have shown that a subset of terminally differentiated cells, including Paneth cells, tuft cells, or enteroendocrine cells, may also have some degree of plasticity in specific situations. The function of ISCs is maintained by the neighboring stem cell niches, which strictly regulate the key signal pathways in ISCs. In addition, various inflammatory cytokines play critical roles in intestinal regeneration and stem cell functions following epithelial injury. Here, we summarize the current understanding of ISCs and their niches, review recent findings regarding cellular plasticity and its regulatory mechanism, and discuss how inflammatory cytokines contribute to epithelial regeneration.  相似文献   

20.
Retinoprotective proteins play important roles for retinal tissue integrity. They can directly affect the function and the survival of photoreceptors, and/or indirectly target the retinal pigment epithelium (RPE) and endothelial cells that support these tissues. Retinoprotective proteins are used in basic, translational and in clinical studies to prevent and treat human retinal degenerative disorders. In this review, we provide an overview of proteins that protect the retina and focus on pigment epithelium-derived factor (PEDF), and its effects on photoreceptors, RPE cells, and endothelial cells. We also discuss delivery systems such as pharmacologic and genetic administration of proteins to achieve photoreceptor survival and retinal tissue integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号