首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《分离科学与技术》2012,47(16):3299-3321
Abstract

Nanofiltration (NF) membranes have been employed in pre‐treatment unit operations in both thermal and membrane seawater desalination processes. This has resulted in reduction of chemicals used in pretreatment processes as well as lowering the energy consumption and water production cost and, therefore, has led to a more environmentally friendly processes. In order to predict NF membrane performance, a systematic study on the filtration performance of selected commercial NF membranes against brackish water and seawater is required. In this study, three commercial nanofiltration membranes (NF90, NF270, N30F) have been used to treat highly concentrated different salts solutions (MgCl2, Na2CO3, and CaSO4) at salinity level similar to that of brackish water and seawater. The main parameters studied in this paper are salt concentration and feed pressure. The experimental data were correlated and analysed using the Spiegler‐Kedem model. In particular, the reflection coefficient (σ) of all studied membranes and the solute permeability (Ps) have been determined for all membranes and at different salinity levels of studied salts. All the studied membranes fitted the model well for all investigated salts except the experimental data of MgCl2 using N30F membrane, which did not fit well at low rejection. The results showed that NF90 produced a high rejection around 97% for all salts with medium permeate flux while NF270 gave a high flux with medium rejection and N30F gave low rejection and flux.  相似文献   

2.
A novel nanofiltration (NF) membrane was prepared with cyclen and trimesoyl chloride by interfacial polymerization on a poly(ether sulfone) ultrafiltration membrane with a molecular weight cutoff of 50,000 Da. The effects of the reaction time, monomer concentration, and heat‐treatment temperature are discussed. The physicochemical properties and morphology of the prepared NF membrane were characterized by Fourier transform infrared spectroscopy–attenuated total reflectance, scanning electron microscopy, energy‐dispersive spectrometry, and atomic force microscopy. The NF performances were evaluated with solutions of Na2SO4, MgSO4, Mg(NO3)2, and NaCl. The salt‐rejection order of the prepared NF membrane was as follows: Na2SO4 > MgSO4 > Mg(NO3)2 > NaCl. The resulting rejection of Na2SO4 and PEG600 (polyethylene glycol with the average molecular weight of 600) were more than 90%, whereas that of NaCl was approximately 10%. After the addition of silica sol in the aqueous phase (silica sol concentration = 0.1% w/v), the salt rejection of the membrane changed slightly. However, the water flux was from 24.2 L·m?2·h?1 (25°C, 0.6 MPa) up to 38.9 L·m?2·h?1 (25°C, 0.6 MPa), and the resulting membrane exhibited excellent hydrophilicity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42345.  相似文献   

3.
The novel positively charged poly(ether ether ketone)s (PEEKs) with pendant quaternary ammonium groups were synthesized by copolymerization of 3, 3′‐dimethylaminemethylene‐4,4′‐biphenol (DABP), 3,3′,4,4′‐tetramethylbiphenol, and 4,4′‐bisfluorobenzophenone followed by reaction with iodomethane. The resulting copolymers were used to prepare thin film composite (TFC) nanofiltration (NF) membranes via the dip‐coating method. The effects of different parameters such as copolymer concentration and curing time on the membrane performance (flux and rejection of inorganic salts) were investigated. The optimum parameters were that 1.5 wt % quaternary ammonium PEEK containing 1.8 quaternary ammonium groups per unit with 0.5 wt % DMSO coated on the polysulfone (PSf) support membrane and cured at 100°C. The results of the performance testing showed that the trend for rejection was R > R > RNaCl > R (R = rejection), which was a typical positively charged membrane. The best performance of these composite nanofiltration membranes was 91.3% rejection for 500 ppm MgCl2 and 62.5 L/m2 h water permeability at 0.4 MPa. The MWCO of the membrane was 800 Da. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Three commercial membranes (NF70, NF90 and TFC-SR) were firstly characterized in terms of pure water flux and the rejection of uncharged (alcohols and sugars) compounds. Subsequently, the rejection of monovalent (sodium and chloride) and divalent (calcium and sulphate) ions in single (NaCl, CaCl, and Na2SO4) and binary (NaCI/Na2,SO4 CaCl2/CaSO4, NaCI/CaCl2, and Na2SO4/CaSO4) salt mixtures was studied. According to the pure water permeability the TFC-SR membrane is a loosely packed NF membrane (12.3 L.m −2.h−1.bar−1), while both NF70 and NF90 are tightly packed (2.6 and 3.6 Lm−2.h−1.bar-). According to the uncharged solute rejection, the MWCONF70 = 60, MWCONF90= 200 and MWCOTFC-SR > 500. NF70 and NF90 were equally efficient in rejecting 1-2, 1-1 and 2-1 salts (>90%), while TFC-SR showed typical negatively charged surface behaviour, i.e., R (1-2) salt > R (11) salt > R (2-1). Sulphate rejection decreased in the presence of sodium chloride more significantly than in the presence of calcium chloride due to the more efficient retention of the bivalent calcium.  相似文献   

5.
cis,cis‐1,3,5‐Triaminocyclohexane (TAC) was synthesized and used to prepare composite nanofiltration (NF) membranes by interfacial polymerization with trimesoyl chloride (TMC). The surface elemental composition, morphology, and hydrophilicity of the prepared NF membranes were characterized. The separation performances were examined with various salts and polyethylene glycol (PEG400, PEG600) solutions. The effects of preparation conditions were also systematically studied. The NF membrane was negatively charged and exhibited a salt rejection in the order Na2SO4 (98.2%) > MgSO4 (90.8%) > MgCl2 (84.5%) > NaCl (54.6%). The water permeability was 1.56 L m?2 h?1 bar?1, and the molecular weight cutoff was 600 Da. The TAC/TMC membrane exhibited some characteristics that were different from the ones made from common diamines such as m‐phenylenediamine: (1) the surface was smoother, without a ridge‐and‐valley structure; (2) there were two kinds of crosslinking points in the polyamide chains; (3) the active layer was formed faster (only 5 seconds was required to reach a Na2SO4 rejection of 98%). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43511.  相似文献   

6.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by interfacial polymerization to develop a positively charged dense network structure. According to this mechanism, a positively charged hollow‐fiber composite nanofiltration (NF) membrane was prepared by quaternization to achieve a crosslinked PDMAEMA gel layer on the outer surface of polysulfone hollow‐fiber ultrafiltration (UF) membranes with a PDMAEMA aqueous solution as a coating solution and p‐xylylene dichloride as an agent. The preparation conditions, including the PDMAEMA concentration, content of additive in the coating solution, catalyzer, alkali, crosslinking temperature, and hollow‐fiber substrate membrane, were studied. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the structure of the membranes. This membrane had a rejection to inorganic salts in aqueous solution. The rejection of MgSO4 (2 g/L aqueous solution at 0.7 MPa and 25°C) was above 98%, and the flux was about 19.5 L m?2 h?1. Moreover, the composite NF membranes showed good stability in the water‐phase filtration process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) as a novel membrane material was successfully prepared from poly(phthalazinone ether sulfone ketone), with concentrated sulfuric acid as the solvent and catalyst, and chloromethyl octyl ether with lower toxicity as the chloromethylated regent. The effects of the reaction conditions on the preparation of CMPPESKs with different degrees of chloromethylation were examined. The quantity of chloromethyl groups per repeated unit (DCM) of CMPPESK was determined by the method of analysis of the chlorine element, and structures were characterized by 1H‐NMR spectroscopy. The introduction of chloromethyl groups into the polymer chains led to a decrease in the decomposition temperature. With increasing DCM, the initial degradation temperature declined. CMPPESK had good solubility and was soluble in N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylacetamide (DMAc), and chloroform. However, quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) had excellent solvent resistance, was only partly soluble in sulfuric acid (98%), and was swollen in N,N‐dimethylformamide. QAPPESK nanofiltration (NF) membranes had about 90% rejection for MgCl2, and the performance of the NF membrane prepared with DMAc as the solvent was superior to that of the NF membrane prepared with NMP as the solvent. In addition, the rejection to the different salt solutions followed the following sequence: MgCl2 > MgSO4 > NaCl > Na2SO4. Furthermore, the thermotolerance of the QAPPESK NF membrane was examined, and the results show that when the solution temperature rose from 11 to 90°C, the water flux increased more than threefold with stable salt rejection. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
A cellulose acetate membrane was applied to the study of reverse osmosis on aqueous solutions of LiCl, NaCl, KCl, CaCl2, SrCl2 and BaCl2. This membrane, 71 microns thick and having an effective diameter of 1 1/2 in. was mounted within a specially constructed cell, made of stainless steel and designed to withstand pressures up to 1500 psi. The cell consisted of two chambers, which were separated by the membrane, and a porous plate supporting it. Solutions of 0·05 N, for all of these salts, were used to establish the osmotic pressure of each solution, the water fluxes through the membrane, and the extent of salt rejection. These variables were also determined for NaCl normalities of 0·2 and 0·6. On a single pass basis, the salt rejections ranged from 76% for KCl up to 95% for CaCl2. The results are discussed in terms of the size of the hydrated cation. The water fluxes for all these solutions were found to be essentially the same and were independent of the type of salt. For solutions of 0·05 N, the water fluxes ranged from zero at the osmotic pressure up to about 44 × 10?5 g sec?1cm?2 (8·8 gal day?1ft?2) at 800 psi and 77°F. Also, for the 0·05 N-NaCl solution, the temperature was varied from 77°F to 120°F. The results of this temperature study show that the extent of salt rejection remains essentially fixed, while the water flux at any given pressure at 120°F becomes nearly double that of 77°F.  相似文献   

9.
A novel positively charged loose nanofiltration (NF) membrane was fabricated feasibly by UV-induced photografting polymerization of diallyl dimethyl ammonium chloride (DADMAC) on Polysulfone ultrafiltration membrane. A possible reaction mechanism was proposed that a linear chain structure and/or pyrrole like five-membered nitrogen heterocycles structure on the side chain were grafted to form the active barrier layer. NF membrane demonstrated a looser average pore size of 8.6 nm and positive charges surface. Owing to the nanoscale ultrathin nanoscale barrier layer and the combination of Donnan exclusion and steric hindrance, NF membrane exhibited good hydrophilicity, a high pure flux of 60 L/m2 h (0.5 MPa), a good salt rejection to Mg2+ (90.8%), Al3+ (94.0%), Ca2+ (91.5%), and a high dye rejection to methylene blue (99.4%) and congo red (100.0%) respectively. The salts rejection of NF membrane to different salts followed the order of AlCl3 > CaCl2 > MgCl2 > NaCl > LiCl > MgSO4 > Na2SO4. NF membrane showed certain fouling resistance to seawater and BSA solution. The grafting polymerization kinetics were comprehensively investigated including irradiation time, monomer concentration and irradiation intensity. X-ray Photoelectron Spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurement were employed to investigate membrane chemistry, morphologies, and hydrophilicity.  相似文献   

10.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by quaternization to develop a positively charged dense network structure. According to this mechanism, PDMAEMA/polysulfone (PSF) positively charged nanofiltration membrane was developed by interfacial crosslinking polymerization using PSF plate microfiltration membrane as support layer, PDMAEMA aqueous solution as coating solution, and p‐xylylene dichloride/n‐heptane as crosslinking agent. Technique and condition of developing membrane such as concentration of coating solution, coating time, pH value of coating solution, content of low molecular weight additive in coating solution, concentration of crosslinking agent, crosslinking time, and number of coatings were studied. FTIR, SEM, and X‐ray photoelectron spectroscopy were used to characterize the structure of membranes. This membrane had rejection to inorganic salts in water solution, the rejection rate to MgSO4 (1 g/L water solution at 0.8 MPa and 30°C) was about 90%, and permeation flux was about 10–20 L m?2 h?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2721–2728, 2004  相似文献   

11.
The goal of this study was to prepare positively charged nanofiltration (NF) membranes to remove cations from aqueous solutions. A composite NF membrane was fabricated by the modification of a polysulfone ultrafiltration support. The active top layer was formed by the interfacial crosslinking polymerization of poly(ethylene imine) (PEI) with p‐xylene dichloride (XDC). Then, it was quaternized by methyl iodide (MI) to form a perpetually positively charged layer. The chemical and morphological changes of the membrane surfaces were studied by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy. To optimize the membrane operation, the PEI solution concentration, PEI coating time, XDC concentration, crosslinking time, and MI concentration were optimized. Consequently, high water flux (5.4 L m?2 h?1 bar?1) and CaCl2 rejection (94%) values were obtained for the composite membranes at 4 bars and 30°C. The rejections of the NF membrane for different salt solutions, obtained from pH testing, followed the order Na2SO4 < MgSO4 < NaCl < CaCl2. The molecular weight cutoff was calculated by the retention of poly(ethylene glycol) solutions with different molecular weights, and finally, the stoke radius was calculated as 1.47 nm. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41988.  相似文献   

12.
Thin film composite (TFC) nanofiltration membranes with defined porous structure of the separation layer are desirable for the concentration of neutral solute and separation of salts from a mixture. Herein, we report the formation of TFC membranes composed of polyamide (PA) separation layer by the interfacial polymerization between new dextran‐butyl amine (Dex‐NH2) macromonomer and trimesoyl chloride on polysulfone support membrane. The membranes prepared with 1%–1.5% (wt/vol) of Dex‐NH2 exhibited water permeance of 110–116 L m?2 h?1 MPa?1 with 62%–71% rejection of Na2SO4 and 12%–14% rejection of MgCl2. The membranes also showed about 91% rejection of poly(ethylene glycol) of molecular weight 2000 g/mol and about 11% rejection of NaCl. A decrease in permeance and ions selectivity was observed with increasing concentration of Dex‐NH2. The dextran chains attached to the PA network restrict the diffusion of Dex‐NH2 toward the interfacial zone and thereby assist the formation of porous and thin PA layer compared to that when free amine (alkyl diamine) was used. These membranes are applicable for the separation of small molecular weight neutral solutes from mixture containing monovalent salts. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45301.  相似文献   

13.
In this article, the hydrodynamic behavior of dilute aqueous solutions of a natural polysaccharide—gellan in the porous media under the modeled oilfield conditions is described. The hydrodynamic properties of gellan and poly(acrylamide) solutions in saline porous media are compared. The influence of inorganic salts NaCl, KCl, CaCl2, MgCl2, and BaСl2 on sol–gel and gel–sol transitions of dilute gellan solutions was evaluated. The mechanism of sol–gel transition in the presence of individual alkaline and alkaline‐earth metal salts is described on the basis of literature data. The viscometric measurements revealed that the effectiveness of salts to enhance gelation of gellan changes in the following order: BaСl2 > CaCl2 ≈ MgCl2 > KCl > NaCl. The sol–gel and gel–sol phase transitions of gellan solution were also observed upon addition of oil field water containing 73 g L?1 of alkaline and alkaline earth metal ions. During the injection of gellan solutions into the porous media saturated by saline water an oscillation of the injection pressure was observed. Such behavior of gellan is explained by either the sol‐to‐gel and the gel‐to‐sol transitions of the polymer taking place in saline water or the step‐by‐step plugging of high permeable channels until all high permeable channels of sand packs are plugged due to gellan invasion. The application of brine‐initiated gelation of gellan for water shutoff operations (WSO) in field conditions was demonstrated. Higher technological effectiveness of gellan injection in comparison with existing gelation systems was shown. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41256.  相似文献   

14.
In this work, the biomacromolecule, single-stranded deoxyribonucleic acid (ssDNA) was innovatively incorporated into the polyamide layer to tailor the permeate flux and antifouling performance of the nanofiltration (NF) membranes. With active amines groups, the ssDNA was as the aqueous phase monomers along with piperazine (PIP), and reacted with trimesoyl chloride on polyethersulfone substrate to fabricate thin-film composite (TFC) NF membranes. The NF membrane prepared under optimal ratio of ssDNA/PIP had a pure water permeability of 75.8 L m−2 h−1 (improved 58% compared to PIP NF membrane) and Na2SO4 rejection of 98.0% at 6.0 bar. The rejections for different inorganic salts were the order: Na2SO4 (98.0%) > MgSO4 (89.2%) > MgCl2 (72.8%) > NaCl (23.0%). Furthermore, the TFC NF membranes showed good antifouling performance in long-term running with 300 ppm bovine serum albumin and humic acid solution. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 47102.  相似文献   

15.
Nanofiltration (NF), which has been largely developed over the past decade, is a promising technology for the treatment of organic and inorganic pollutants in surface and ground waters. The ESNA 1 membrane from the Nitto Denko Corporation of Japan is made of aromatic polyamide, which provides salt rejection from 50% to 90%. In this paper permeation experiments of aqueous solutions of five chlorides (NH4Cl, NaCl, KCl, MgCl2 and CaCl2), three nitrates (NaNO3, Mg(NO3)2 and Ca(NO3)2), and three sulfates (NH4)2SO4, Na2SO4 and MgSO4) were carried out. The effects of species and concentration of salts on the separation performance of the ESNA 1 membrane were investigated. The experimental results showed that the rejection to most salts by the ESNA 1 membrane decreased with the growth of the concentration. Then, the reflection coefficient and solute permeability of ESNA 1 membrane were calculated by the Spiegler-Kedem equation from experimental data. The reflection coefficients of the ESNA 1 membrane to salts are all above 0.95. The salt permeabilities, except for magnesium and calcium salts, increased with the growth of concentration. The sequence of rejection to anions by the ESNA 1 membrane is R(SO2−4) > R(Cl) > R(NO3) at the same concentration which ranges from 10 mol/m3 to 100 mol/m3. The sequence of rejection to anions by the ESNA 1 membrane can be written as follows: R(Na+) > R(K+) > R(Mg2+) > R(Ca2+) at 10 mol/m3 concentration and R(Mg2+) > R(Ca2+) > R(Na+) > R(K+) at 100 mol/m3 concentration.  相似文献   

16.
《分离科学与技术》2012,47(14):3085-3099
Abstract

A series of carboxymethyl cellulose sodium composite nanofiltration membranes were prepared through the method of coating and cross‐linking. Effects of the preparation techniques and the operating conditions on the rejection performance of the resulting membranes were investigated, respectively. It suggested that the resulting composite NF membrane with excellent rejection performance should be prepared through a certain preparing technology. Attenuated total reflection infrared spectroscopy and atomic force microscopy were employed to characterize the resulting membrane. The rejection of this kind of negatively charged membrane to the electrolyte solutions decreased in the order of Na2SO4, NaCl, MgSO4, and MgCl2.  相似文献   

17.
A novel branched polyether surfactant (TPE) was prepared by anion polymerization with different proportions of propylene oxide (PO) and ethylene oxide (EO) using 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane as a core. The structures and average molecular weight (M n ) of the TPE were characterized by 1H NMR and GPC. The cloud point was determined by turbidimetry in the presence of inorganic salts. Inorganic salts decreased the cloud point of TPE polyether in the following order: Na2CO3 > Na2SO4 > NaCl > CaCl2 > MgCl2. The effects of inorganic salts (NaCl, MgCl2, CaCl2, and NaSCN) and temperature on the surface activity of TPE in aqueous solution were investigated by surface tension measurements. The surface activity parameters and the thermodynamic parameters were calculated from surface tension data. Similar to the effect of increasing temperature, the salting-out inorganic salts such as NaCl, MgCl2, and CaCl2 favor the micellization and increase the maximum surface excess concentration, while the salting-in NaSCN has the opposite effect. The influence of NaCl on the morphology of micelles was investigated by TEM. The micellization is entropy-driven at low temperature and enthalpy-driven at higher temperature. The TPE polyether has large surface activity and can be used as a demulsifier to break up crude oil emulsions.  相似文献   

18.
To improve the performance of nanofiltration (NF) membranes, a chiral mesogenic compound, a positively charged compound, and a negatively charged compound were grafted to chitosan, respectively. Series of novel composite NF membranes were prepared by over‐coating the polysulfone ultrafiltration membrane with the mixture of chitosan and modified chitosan. The chiral mesogenic compound, the positively charged compound, the negatively compound and their chitosan derivatives were characterized by infrared spectrophotometer, differential scanning calorimetry, polarized optical microscope; the structure of the membrane was characterized by scanning electron microscopy. The performance of composite NF membranes was strictly related to the novel compounds grafted to chitosan and its composition. The rejection reached the maximum of 95.7% for CaCl2 with P2‐7 composite NF membrane, corresponding flux was 3155 Lm?2h?1. The rejection reached the maximum of 93% for Na2SO4 with P3‐5 composite NF membrane, corresponding flux was 3879 Lm?2h?1. Comparing with conventional NF membranes, the membranes were used in low pressure with high flux, especially for the separation of high‐valence ions from solution. The membranes were typical charged NF membranes. POLYM. ENG. SCI., 57:22–30, 2017. © 2016 Society of Plastics Engineers  相似文献   

19.
A study was carried out in which aqueous solutions of acrylic acid–maleic acid copolymer (mole ratio of monomers: 3:2) were diluted with solutions of various salts [NaCl, MgCl2, CaCl2, SrCl2, ZnCl2, Al(NO3)3 and Fe(NO3)3]. This copolymer was found to interact with all these salts to make solutions of enhanced acidity that infrared spectroscopy suggested was a result of charge stabilization of the polyanion by counterions occupying atmospheric or site‐bound locations. The cations of the salts NaCl, MgCl2, CaCl2 and SrCl2 appeared to occupy atmospheric positions only; in contrast, with poly(acrylic acid) they showed some site binding. Zinc ions, on the other hand, gave identical bridging bidentate interactions with both polymers. The cations from the trivalent salts Al(NO3)3 and Fe(NO3)3 were atmospheric and site bound (bridging bidentate), respectively, and these were also different from their interactions with poly(acrylic acid). The addition of Fe(NO3)3 to the copolymer caused gelation, as with poly(acrylic acid), but formation of the gel was slower and did not result in phase separation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1680–1684, 2000  相似文献   

20.
In this study, self‐synthesized copper(I) oxide (Cu2O) nanoparticles were incorporated in poly(ether sulfone) (PES) mixed‐matrix membranes (MMMs) through the phase‐inversion method. A cubic arrangement and crystallite size of 28 nm was identified by transmission electron microscopy and X‐ray diffraction (XRD) for the as‐synthesized Cu2O particles. The pristine PES membrane had a higher contact angle value of 88.50°, which was significantly reduced up to 50.10° for 1.5 wt % PES/Cu2O MMMs. Moreover, XRD analysis of the Cu2O‐incorporated PES membrane exhibited a new diffraction pattern at 36.46°. This ensured that the Cu2O nanoparticles were distributed well in the PES matrix. Interestingly, the water permeability progressively improved up to 66.72 × 10?9 m s?1 kPa?1 for 1.5 wt % PES/Cu2O MMMs. Furthermore, the membrane performances were also evaluated with different feed solutions: (1) bovine serum albumin, (2) humic acid, and (3) oil–water. The enhanced rejection and lower flux reduction percentage were observed for hybrid membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43873.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号