首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyester (PET), cotton (COT), and two relative blend textile fabrics were treated by sol–gel processes. Tetraethoxysilane (TEOS) was used as inorganic precursor of silica phases; furthermore, different TEOS/H2O ratios were examined to explore the effect of the presence of SiO2 on the thermal and fire stability of the textile fabrics investigated. The distribution and dispersion of SiO2 were observed by means of scanning electronic microscopy (SEM). SEM magnifications showed the formation of a continuous silica film located in the neighboring fibers; furthermore, in the case of PET, such a film incorporated silica particles with an average diameter ranging between 0.2 and 6 μm. The thermal and thermooxidative stabilities of the treated samples were investigated by thermogravimetric analysis: after the sol–gel treatment, the degradation mechanism was modified both in nitrogen and in air, and the improvement in the thermal stability was attributed to the presence of silica, which played a protective role in the degradation of the textile fabrics. Finally, we investigated the combustion behavior of the textile fabrics by cone calorimetry, measuring the time to ignition, the heat release rate, and the relative peak. The former was found to depend on the type of fabric; the latter generally evidenced a remarkable decrease for all of the treated samples, up to 35% compared to the neat counterparts. This indicated that the sol–gel treatments improved the flame retardancy of the PET/COT fabrics. This conclusion was also confirmed by limiting oxygen index tests, which evidenced burning kinetics changes in the presence of the silica coating. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Superhydrophobic and superoleophilic cotton fabric was successfully prepared with fluorinated silica sol via a facile sol–gel method. A fluorinated polymeric sol–gel precursor (PHFBMA-MTS) was synthesized via free-radical polymerization by using hexafluorobutyl methacrylate (HFBMA) in the presence of (3-mercaptopropyl)trimethoxysilane (MTS) as the chain transfer agent, which led to the formation of fluoropolymer with alkoxysilane end groups. Then the fluorinated silica sol was prepared by introducing PHFBMA-MTS as the co-precursor of tetraethylorthosilicate (TEOS) in the sol–gel process with ammonium hydroxide as the catalyst, which was then used to fabricate superhydrophobic and superoleophilic fabric coatings through a simple dip-coating method. The coated fabrics showed superhydrophobic property with a high water contact angle of 154.1° and superoleophilic property with an oil contact angle of 0°. Moreover, the coated fabrics still kept superhydrophobicity even after ultrasonic treatment, as well as for organic solutions, acidic solutions. Thus, the coated fabrics were successfully applied to separate oil–water mixture with separation efficiency up to 99.8%. More importantly, the separation efficiency had no significant change after 20 cycles of oil–water separation. These present a simple, low-cost, and durable approach to achieve industrialized application of coated fabrics in oil–water separation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47005.  相似文献   

3.
In this study, cotton fabric was successfully modified to have an antibacterial property through use of the sol–gel process. Dodecanethiol‐capped silver nanoparticles, which have powerful antibacterial activity, were incorporated in silica sol. The starting materials were silver nitrate, tetraoctylammonium bromide, sodium borohydride, chloroform, 1‐dodecanethiol, ethanol, tetraethylorthosilicate, and water. The cotton fabric was padded with dodecanethiol‐capped silver nanoparticle–doped sol, dried at 60°C, and cured at 150°C. Scanning electron microscopy showed a uniform and continuous layer of doped sol on the fiber surface. The antibacterial effects of the treated cotton fabric against Escherichia coli were examined and found to be excellent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101:2938–2943, 2006  相似文献   

4.
The thin-coat finishing of textiles carried out by the sol–gel methods gain greater and greater importance owing to their suitability for the versatile functionalization of textiles to impart to them properties being difficult and even impossible to obtain with the use of conventional finishing methods. This article presents the test results of the thin-coat protective finishing of cotton fabrics against abrasion. This treatment consists in depositing hybrid SiO2*/Al2O3 sols synthesized from two precursors: (3-glycidoxypropyl)trimethoxy-silane and aluminum isopropoxide on fiber/fabric surface. The abrasion resistance of the fabric treated by the sol–gel method has been increased by about five times according to Martindale test and this effect is resistant to prolonged laundering. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
This article reports a facile one‐step methodology to increase fire resistance properties of cotton fabric. The flame‐retardant coating for cotton fabric was synthesized with methyltriethoxysilane and organophosphates (M102B) through an ultrasound irradiation process. The coating structure and surface morphology of uncoated and coated fabrics were investigated by Fourier transform infrared spectroscopy and scanning electron microscope, respectively. The flame‐retardant properties, bending modulus, air permeability and thermal stability were studied by vertical burning test, cantilever method, air permeability test and thermogravimetric analysis (TGA). As a result, the cotton fabric coated with 29.2% (mass increased) of flame‐retardant coating was able to balance the flame retardant property and wearing comfort of the fabrics. The TGA results showed that the residue char of cotton was greatly enhanced after treatment with the coating, which has a high char forming effect on cellulose during testing. Furthermore, flame‐retardant property of coated fabrics did not change significantly after 10 washing cycles. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45114.  相似文献   

6.
Phosphoramide containing an active vinyl group (P‐III) was prepared. Its structure was confirmed by elemental analysis and Fourier transform infrared, nuclear magnetic resonance, and mass spectroscopy. P‐III was evaluated as a fire‐retardant finishing agent for cotton fabrics. It was applied to cotton fabrics using a graft process with an Fe2+/H2O2 redox system. The major factors affecting the reaction were studied. The finished cotton fabrics were examined for flammability, and the effect of washing on treated fabrics was also examined. The results showed that P‐III can be successfully used as a flame retardant for cotton fabrics. Durably flame‐retardant cotton fabrics were obtained at add‐on levels higher than 38%. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2573–2578, 2003  相似文献   

7.
A three‐layer functional coating was prepared through layer‐by‐layer (LbL) assembly and a sol–gel process. The multilayered coating was composed of a phytic acid (PA) coating dipped between two layers of flexible polysiloxane coatings and was deposited on the polyester fabric by LbL assembly. Flammability tests indicated that the multilayer coating prevented droplet generation during combustion. The PA also absorbed the reactive free radicals to reduce the flame‐burning rate. After being soaked for only 20 min in PA solution, the fabric exhibited self‐extinguishing properties and antidroplet effect during the vertical flame test, while cone calorimetry confirmed that the coated fabric exhibited a 65% decrease in the peak heat release rate and reduced the total amount of smoke released by 72%. After washing the coated fabric 45 times, there was no significant decrease in the phosphorus content and the limiting oxygen index of coated fabrics. Thus, the coating synthesized in this study is an effective method of constructing durable, functional coatings on the surface of fabrics. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46414.  相似文献   

8.
In this study, lightweight 100% cotton fabric was successfully modified by the sol–gel process to impart high ultraviolet radiation (UVR) scattering property to the fabric surface. Active ingredients were tetraethyl orthotitanate [Ti(OCH2CH3)4] and tetraethyl orthosilicate [Si(OCH2CH3)4]. The cotton fabric was padded with the nanosol solution, dried at 60°C, and cured at 150°C. Scanning electron microscopy showed continuous and uniform film on the fiber surface. Excellent UVR scattering was obtained with all treated fabrics. Increasing titania content in the nanosol solution leads to increased UVR protection. This is attributed to the increase of the refractive index of the film formed on the fabric surface. Excellent durability of the treatment was obtained, which indicates a good adhesion between the coating and the fabric surface. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 111–117, 2007.  相似文献   

9.
A new kind of eco‐friendly chicken‐feather protein‐based phosphorus–nitrogen‐containing flame retardant was synthesized successfully with chicken‐feather protein, melamine, sodium pyrophosphate, and glyoxal. And its structure was characterized by Fourier transform infrared spectroscopy, and the thermogravimetry of the agent was analyzed. Then the flame retarding performances of the chicken‐feather protein‐based flame retardant and in combination with the borax and boric acid in application to a woven cotton fabric were investigated by the vertical flammability test and limited oxygen index test. In addition, the surface morphologies of the treated and untreated fabrics were conducted by the scanning electron micrographs (SEM), and the thermogravimetric analyses of the treated and untreated cotton were explored, and the surface morphologies of char areas of the treated and untreated fabrics after burnt were tested by the SEM. The results showed that the flame retardancy of the cotton fabric treated by the chicken‐feather protein‐based flame retardant in combination with borax and boric acid was improved further, and the combination of the chicken‐feather protein‐based flame retardant and borax and boric acid could facilitate to form a homogenous and compact intumescing char layer, and the combination of them plays a good synergistic effect in the improvement of the flame retardancy of the treated cotton fabric. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40584.  相似文献   

10.
Versatile and intriguing solution‐based processes are utilized to synthesize nanostructured materials for device applications to reduce material production and device fabrication costs. This study presents results on the fabrication and characterization of copper oxide (CuO) coated cobalt‐doped zinc oxide nanowires (Co‐doped ZnO NWs)‐based heterojunction diodes prepared by a two‐step synthesis route through combined hydrothermal growth and sol–gel spin coating. Highly dense, well‐ordered, undoped, and Co‐doped ZnO NWs were successfully grown by hydrothermal method. Complementary CuO thin films were synthesized by sol–gel method and subsequently coated onto both undoped and Co‐doped ZnO NWs through spin‐coating technique. Enhanced diode properties with a rectification ratio of 103 at ±2 V and an ideality factor of n = 2.4 (in dark) were obtained for Co‐doped ZnO NWs‐based heterojunction diodes. The obtained results demonstrated that the investigated heterojunction diode structure fabricated by facile and cost‐effective solution‐based processes can be a promising candidate for the next generation optoelectronic devices.  相似文献   

11.
Self-cleaning of wool fabric has been of increasing interest due to availability and practicability. In this paper, two kinds of wool fabrics, including raw wool and Kroy-process wool fabric, were successfully modified by TiO2/SiO2 gel stabilized by 1,2,3,4-butanetetracarboxylic acid (BTCA) and citric acid (CA), respectively. The optimum concentration of carboxylic acids and TiO2/SiO2 gel was decided by the crease recovery angles and total color difference (ΔE) values, respectively. The results revealed that wool fabrics treated with BTCA and TiO2/SiO2 had better wrinkle resistance in comparison with CA and TiO2/SiO2 treated samples. The decomposition of stains was studied using UV irradiation and the presence of TiO2/SiO2 gel demonstrated obvious self-cleaning property, in which the color of wool fabric was unchangeable. The hydrophilicity of Kroy-process wool fabric increased relative to raw ones. In addition, Scanning Electron Microscope images demonstrated the layer of TiO2/SiO2 nanoparticles coated on treated samples. In general, the adhesion properties coated to the fabric surface showed a slight loss even at harsh processing conditions, however, the anti-UV properties obviously increased due to the decrease in the fabric porosity. And the linkages between carboxylic acid and wool fibers were illustrated using FTIR pattern.  相似文献   

12.
The titanium hydrosol was prepared and treated on the cotton fabrics to improve its antibacterial and UV‐resistant properties. The sol size and gel morphology on the fabric were characterized by Nanosizer, SEM, and AFM. The antibacterial reduction rate of the treated fabrics against Staphylococcus aureus and Escherichia coli reached above 95%, and the corresponding UV transmittance value of the treated fabrics decreased considerably, with a ultraviolet protection factor of 50 or excellent grade, and the protection was tested according to the Australian/New Zealand standards. In spite of 50 washing cycles, the antibacterial and UV‐resistant properties changed almost little because of the strong affinity between the gel particles and cellulose material. The strength tests of the treated fabrics also showed no negative effects from the treatment on the fabrics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1478–1482, 2006  相似文献   

13.
A facile method to prepare superhydrophobic fluoropolymer/SiO2 nanocomposites coating on polyester (PET) fabrics was presented. The vinyl nanosilica (V? SiO2) hydrosols were prepared via one‐step water‐based sol‐gel reaction with vinyl trimethoxy silane as the precursors in the presence of the base catalyst and composite surfactant. Based on the V? SiO2 hydrosol, a fluorinated acrylic polymer/silica (FAP/SiO2) nanocomposite was prepared by emulsion polymerization. The FAP/SiO2 nanocomposites were coated onto the polyester fabrics by one‐step process to achieve superhydrophobic surfaces. The results showed that silica nanoparticles were successfully incorporated into the FAP/SiO2 nanocomposites, and a specific surface topography and a low surface free energy were simultaneously introduced onto PET fibers. The prepared PET fabric showed excellent superhydrophobicity with a water contact angle of 151.5° for a 5 μL water droplet and a water shedding angle of 12° for a 15 μL. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40340.  相似文献   

14.
To examine the feasibility of developing flame‐retardant‐textile coated fabric systems with electrospun polyamide/boric acid nanocomposites, fiber webs coated on cotton substrates were developed to impart‐fire retardant properties. The morphology of the polyamide/boric acid nanocomposite fibers was examined with scanning electron microscopy. The flame‐retardant properties of coated fabric systems with different nanoparticle contents were assessed. The flame retardancy of the boric acid coated fabric systems was evaluated quantitatively with a flammability test apparatus fabricated on the basis of Consumer Product Safety Commission 16 Code of Federal Regulations part 1610 standard and also by thermogravimetric analysis. The 0.05 wt % boric acid nanocomposite fiber web coated on pure cotton fabric exhibited an increment in flame‐spreading time of greater than 80%, and this indicated excellent fire protection. Also, the coated fabric systems with 0.05% boric acid nanocomposite fiber webs exhibited a distinct shift in the peak value in the thermal degradation profile and a 75% increase in char formation in the thermooxidative degradation profile, as indicated by the results of thermogravimetric analysis. The results show the feasibility of successfully imparting flame‐retardant properties to cotton fabrics through the electrospinning of the polymer material with boric acid nanoparticles. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Sulfonated melamine‐formaldehyde (SMF) resin was successfully synthesized with a mixture of formaldehyde, melamine, and NaHSO3 in an aqueous solution. Then the SMF was used as the blowing agent to combine with chitosan and phytic acid for fabricating the intumescent flame retardant coating on the surface of the cotton fabric by layer‐by‐layer (LbL) self‐assembled technology. As characterized by X‐ray photoelectron spectroscopy, scanning electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy, the (chitosan/SMF + phytic acid)n coating was successfully deposited on the surfaces of cotton fibers. Thermogravimetric analysis results exhibited that the thermal stabilities of coated cotton fabrics under nitrogen and air atmosphere were enhanced at temperatures ranging from 400 to 700 °C compared with pure cotton fabric. At 700 °C, the char residues of cotton‐5BL and cotton‐10BL under a nitrogen atmosphere were improved 25.9 and 32 wt % than that of pure cotton fabric, respectively. In the vertical flame test, the self‐extinguishing could be obtained for the cotton‐10BL sample. This work first utilized SMF as negative polyelectrolyte to fabricate intumescent flame retardant coating by LbL self‐assembled technology on cotton fabric to strengthen its thermal stability and flame resistance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46583.  相似文献   

16.
In this study, titanium dioxide (TiO2) or nano titanium dioxide (nano‐TiO2) was used as a cocatalyst in the flame‐retardant (FR) formulation of N‐methylol dimethylphosphonopropionamide (Pyrovatex CP New, FR), melamine resin [Knittex CHN, crosslinking agent (CL)], and phosphoric acid (PA) for cotton fabrics to improve the treatment effectiveness and minimize the side effects of the treatment. For FR‐treated cotton fabrics, the flame extinguished right after removal of the ignition source with no flame spreading. However, after neutralization and/or home laundering, FR–CL‐treated specimens failed the flammability test, whereas the opposite results were obtained from FR–CL–PA‐treated specimens. A noticeable result was that the TiO2/nano‐TiO2 cocatalyst had a significant effect on decreasing the flame‐spread rate. Thermal analysis found that the FR‐treated specimens without wet posttreatment showed two endothermic peaks representing the phosphorylation of cellulose and acid‐catalyzed dehydration. In addition, the treated fabrics showed some new characteristic peaks in their chemical structures; these were interpreted as carbonyl bands, CH2 rocking bands, and CH3 asymmetric and CH2 symmetric stretching. The surface morphology of the FR–CL–PA‐treated cotton specimens showed a roughened and wrinkled fabric surface with a high deposition of the finishing agent that had a lower breaking load and tearing strength, which resulted from the side effects of the CL used. However, the addition of a TiO2 or nano‐TiO2 cocatalyst could compensate for the reduction in the tensile strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Thin films of environmentally safe, halogen free, anionic sodium phosphate and cationic polysiloxanes were deposited on a Nyco (1:1 nylon/cotton blend) fabric via layer‐by‐layer (LbL) assembly to reduce the inherent flammability of Nyco fabric. In the coating process, we used three different polysiloxane materials containing different amine groups including, 35–45% (trimethylammoniummethylphenythyl)‐methyl siloxane‐55‐65% dimethyl siloxane copolymer chloride salt (QMS‐435), aminoethylaminopropyl silsesquioxane‐methylsilsesquioxane copolymer oligomer (WSA‐7021) and aminopropyl silesquioxane oligomers (WSA‐991), as a positive polyelectrolyte. Thermo‐gravimetric analysis showed that coated fabric has char yield around 40% at 600 °C whereas control fabric was completely consumed. The vertical flame test (VFT) on the LbL‐coated Nyco fabric was passed with after flame time, 2 s, and the char length of 3.81 cm. Volatile and nontoxic degradation products of flame retardant‐coated fabric were analyzed by pyrolysis gas chromatography mass spectroscopy (Py‐GCMS). Surface morphology of coated fabrics and burned fabric residues were studied by scanning electron microscopy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Radiation-initiated polymerization of vinyl phosphonate oligomer (molecular weight 500–1000) and N-methylolacrylamide from aqueous solutions was investigated with cotton printcloth, flanelette, and sateen fabrics and with cotton (50%)–polyester (50%) flannelette fabrics. Determinations were made of the effects of radiation dosage, mole ratio of vinyl phosphonate in the oligomer to N-methylolacrylamide in aqueous solution, concentration of reactants, wet pickup of solutions on fabrics, and irradiation of both dry and wet fabrics on efficiency of conversion of oligomer and monomer in solution to polymer add-on. The effects of vinyl phosphonate oligomer and N-methylolacrylamide radiation-initiated polymerization on some of the textile properties of cotton printcloth and on flame resistances of cotton and cotton–polyester fabrics were evaluated. The breaking strength of modified cotton printcloth was about the same as that of unmodified fabric; however, the tearing strength and flex abrasion resistance of modified fabric were reduced. The textile hand of the modified printcloth fabrics that had flame resistance indicated: interaction between cellulose and vinyl phosphonate oligomer–poly(N-methylolacrylamide) and uniform deposition in the fibrous cross section (transmission electron microscopy); surface areas of heavy deposits of oligomer–polymer (scanning electron microscopy); and phosphorus located throughout the fibrous cross section (energy dispersive x-ray analysis). Polymerization of vinyl phosphonate oligomer and N-methylolacrylamide was radiation initiated with cotton–polyester fabric; however, this modified fabric did not have flame-resistant properties.  相似文献   

19.
Protection against bacterial contamination remains a demand for healthcare textiles such as wound dressings to reduce or eliminate hospital-acquired infections related to antibiotic-resistant bacteria. We report herein a simple and straightforward in situ approach to deposit copper oxide and titanium oxide nanoparticles onto cotton fabric using a sonochemical-mediated sol–gel method. Modification of the cotton surface was achieved by incorporation of citric acid (CA) and polyethylene glycol (PEG) to improve the attachment of the nanoparticles and reduce the attachment of bacteria to the cotton surface, respectively. The resultant cotton fabric was used against Escherichia coli as a Gram-negative bacterium and Staphylococcus aureus as a Gram-positive bacterium in dark condition as an in vitro model for treatment of bacterial wound infection. The effects of different treatment parameters including duration and frequency of ultrasonic irradiation, surface modification with PEG and/or CA, and cotton chemical composition with different metal oxide molar ratios on the antibacterial activity of the treated cotton fabric were studied. All treated cotton fabrics showed antibacterial activity, with higher efficiency for those coated with CuO or CuO/TiO2 (1:1 molar ratio) among the single metal oxide and composite-modified cotton fibers, respectively. Our results show that such functionalized cotton fibers could actively fight the spread of bacterial infections by preventing bacterial adhesion, enabling more efficient bonding, and ultrasonically promoting generation of nanoparticles and their strong adhesion to the fabric surface.  相似文献   

20.
Blend fabrics of cotton and polyester are widely used in apparel, but high flammability becomes a major obstacle for applications of those fabrics in fire protective clothing. The objective of this research was to investigate the flame retardant finishing of a 50/50 polyester/cotton blend fabric. It was discovered previously that N,N′‐dimethyloldihydroxyethyleneurea (DMDHEU) was able to bond a hydroxy‐functional organophosphorus oligomer (HFPO) onto 50/50 nylon/cotton blend fabrics. In this research, the HFPO/DMDHEU system was applied to a 50/50 polyester/cotton twill fabric. The polyester/cotton fabric treated with 36% HFPO and 10% DMDHEU achieved char length of 165 mm after 20 laundering cycles. The laundering durability of the treated fabric was attributed to the formation of polymeric cross‐linked networks. The HFPO/DMDHEU system significantly reduced peak heat release rate (PHRR) of cotton on the treated polyester/cotton blend fabric, but its effects on polyester were marginal. HFPO/DMDHEU reduced PHRR of both nylon and cotton on the treated nylon/cotton fabric. It was also discovered that the nitrogen of DMDHEU was synergistic to enhance the flame retardant performance of HFPO on the polyester/cotton fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号