首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
目前对弦支穹顶结构抗震计算一般基于刚性地基假定,但由于基础周围土体并非刚性,在地震作用下会产生变形。为研究弦支穹顶结构在地震作用下考虑土结构相互作用动力响应,建立跨度为92 m的弦支穹顶结构土-结构相互作用有限元模型。基于修正S-R(Sway-Rocking)方法的土体简化模型,分析土-结构相互作用下弦支穹顶结构的自振特性及地震响应特征。研究表明:考虑土-结构相互作用后,弦支穹顶结构的自振频率明显减小;在地震作用下,弦支穹顶上部网壳结构的杆件最大压应力和节点最大位移明显增大,而撑杆最大压应力和斜拉杆及环索的最大拉应力均有所减小。  相似文献   

2.
应用动力弹塑性有限元方法,研究了双向地震激励下土钉支护边坡动力响应。考虑土体与支护结构相互作用及其协同工作建立三维有限元模型。给出了地震波和阻尼的选取方法。应用了非线性静动力性能的弹塑性模型模拟土体;采用了可以描述土钉在进入塑性阶段强化性质的双线形弹塑性模型模拟土钉;土与结构的相互作用由接触单元模拟。研究内容包括边坡竖向地震响应、水平地震响应,土钉的地震响应,土压力地震响应。结果表明土钉支护边坡延性大,有很好的抗震性能;地震作用后各层土钉轴力都增大;边坡在地震作用下产生永久位移;地震作用下土压力峰值形状与地震作用前的土压力形状相似。这些结论对土钉支护边坡的抗震设计与动力分析有较高的参考价值。  相似文献   

3.
基于有限元软件ANSYS,对相邻高层结构的动力相互作用进行三维有限元计算模拟分析,探讨建筑群在地震作用下的动力反应规律。分析模型中,地基土体采用上海软土,土体的本构模型采用等效线性模型,土体的侧向边界为黏弹性人工边界,上部结构采用框架剪力墙结构。将结构-土-结构动力相互作用(Structure-Soil-Structure Interaction,简称SSSI)体系与对应的单个结构-土动力相互作用(Structure-Soil Interaction,简称SSI)体系的分析进行比较,证实SSSI与SSI体系建筑物动力特性和地震反应差别。结果表明,与SSI体系相比,考虑SSSI效应时,体系自振频率降低,土体的加速度峰值有所减小,且减小幅度随着土层厚度增加迅速下降;上部结构的峰值位移减小,且减小幅度随着楼层的增高而增大;结构总层间剪力和倾覆力矩减小,且框架部分承担的力矩比例减小。  相似文献   

4.
为深入研究非液化场地中桩-结构体系地震响应和土-结构动力相互作用问题,进行了含有一定深度的松砂层非液化场地土-结构体系动力相互作用大型振动台试验,分析非液化场地和群桩基础的加速度地震响应特征,并对土体侧向变形规律以及桩基弯矩分布进行了分析。结果表明:当输入0.05g拍波时,土体与桩基对加速度反应表现出放大作用,且距离结构较远处土体对加速度放大作用更加明显;当输入0.3g汶川地震卧龙台地震记录时,加速度只在远离桩基的土体中加速度反应有一定放大;桩身最大弯矩均超过60N·m,并且桩基弯矩幅值呈现出桩顶弯矩小(靠近桩顶处)、下部弯矩大(靠近桩端处)的规律,且在土层交界面附近弯矩存在突变;上部结构加速度反应自上而下有一定程度的减小,地震动Arias强度值减小明显,刚性场地上的结构地震动Arias强度是位于土体上结构的3~4倍,说明土体的耗能作用明显。  相似文献   

5.
目前,对于超高层结构进行动力弹塑性分析时,大多采用刚性地基假定,并忽略土-结构相互作用的影响。为了研究土-结构相互作用对超高层结构的影响,建立精细化的土体-地下室-上部结构三维非线性有限元模型,并对一栋高度366 m超高层塔楼进行了罕遇地震动力弹塑性分析。首先根据工程场地条件进行了一维等效线性化分析,以获取土层的地震反应。然后,利用波动法解决了在三维土层地震波动输入的问题,并验证了所采用方法的准确性。计算结果表明:与刚性地基假定相比,考虑土-结构相互作用会增加塔楼的自振周期;在预估的罕遇地震作用下,考虑土-结构相互作用后,塔楼的整体地震反应减小;塔楼层间位移角在低区增大,在高区减小,高区最大层间位移角减小,呈现变形向底部转移的趋势;塔楼高区墙体损伤减轻,结构整体刚度退化程度减小,同时基底剪力和倾覆弯矩降低;塔楼巨柱个别位置的内力增大,忽略土-结构相互作用的影响可能会导致设计结果偏于不安全;所提出的方法能够全面考虑场地土的影响,较为真实地模拟超高层结构的地震响应。  相似文献   

6.
梁建文  朱俊 《岩土工程学报》2018,40(11):1977-1987
基于Biot孔隙介质理论,提出了饱和软土场地中地下结构非线性地震响应分析的一个有限元–间接边界元(FEM-IBEM)耦合方法。方法考虑了饱和土骨架与孔隙水的动力耦合作用及饱和土–结构动力相互作用,并通过等效线性化方法考虑土体的非线性。该耦合方法的特点之一是有限元子域和间接边界元子域相互独立,非常适合并行计算,提高计算效率;特点之二是能够同时考虑有限元子域(近场)和间接边界元子域(远场)的土体非线性。通过与文献结果对比,验证了FEM–IBEM耦合方法的正确性和计算精度。以天津滨海地区一典型深厚饱和软土场地中两层双跨地铁车站为例,计算了地铁车站结构的地震内力和变形,并比较了饱和土体线性和非线性情况下地铁车站地震响应的差别,和饱和土体模型和单相土体模型情况下地铁车站地震响应的差别。研究表明:土体非线性对地铁车站结构的地震内力和变形具有显著影响;饱和土骨架和孔隙水的动力耦合作用对地铁车站结构地震内力和变形也有明显影响。  相似文献   

7.
根据土与结构动力相互作用原理,采用通用有限元计算程序ADINA对气压沉箱在地震荷载作用下的动力响应进行时程分析。讨论了地震引起的结构最大主应力分布以及周围土体对沉箱侧壁和顶板的地震动土压力。计算结果表明:地下沉箱在地震作用下满足强度要求;在同一侧立面上不同水平位置的地震动土压力大小并不相同。  相似文献   

8.
以位于地震断裂带的水电站出线水平井为项目背景,利用大型有限元软件进行三维模拟,考虑土与结构的相互作用,研究分析地震作用下的超深水平井的动态响应。分析表明:水平井在竖向地震作用下的动力响应比在水平地震作用下的小;周围土体对结构的位移限制,以及深厚覆盖层对地震波的吸收,使得水平井无论是水平地震作用还是竖向地震作用下,动力响应都很小,表明水平井的抗震性能优越,证实了深埋结构的抗震可靠性。  相似文献   

9.
 为更好地研究和预测高层建筑结构在地震尤其是罕遇地震作用下的地震响应,选取经历汶川地震的四川绵竹高层建筑剑南春大酒店为研究对象,利用大型有限元软件ABAQUS建立上部结构–桩–土体三维实体模型,对比结构在刚性地基条件下与土地基条件下的自振特性及上部结构动力响应的区别,得出桩间土体和桩端土体对上部结构动力特性的影响规律,同时考察上部结构非线性、土体非线性和桩–土接触非线性对相互作用体系非线性反应的影响。动力弹塑性时程分析结果与已有震后调查资料对比表明,考虑相互作用效应的高层建筑上部结构抗倒塌能力比传统设计方法更符合实际。本文方法具有很强的实用性,结合大型有限元软件ABAQUS可以较准确分析计算高层建筑上部结构–桩–土体相互作用的强非线性问题,为工程实践提供重要的理论依据。  相似文献   

10.
基于ABAQUS有限元分析软件,建立了土体-结构动力相互作用的三维数值模型,利用Python二次开发程序实现了黏弹性边界的自动施加。考虑不同地震加载波形及车站与软弱夹层的相对位置,对典型两层三跨地铁车站结构动力响应进行了研究。结果表明:车站结构动力响应受加载波形及频谱特性影响明显,结构在不同地震波作用下关键部位的内力及位移变化趋势一致;车站与软弱夹层的相对位置对结构受力及变形影响显著,当车站位于软弱夹层位中时结构动力反应最大;对于典型的框架式地下车站而言,中柱的内力反应最大,为最不利受力构件,设计时应重点考虑;在含有软弱夹层的场地中布设水泥桩能够有效降低结构的地震内力反应,减小软弱夹层的不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号