首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogenase intolerance to oxygen remains a critical hurdle on the road to photosynthetic hydrogen production for sustainable energy demands. Although the engineering of the intrinsic oxygen tolerance mechanism of hydrogenase using mutagenesis is an ambitious approach, recent in-vitro studies reported a novel and improved synthetic [FeFe]-Hydrogenase variants. To corroborate these findings in-vivo, we expressed either an engineered variant or its cognate wild type enzyme in the chloroplast genome of Chlamydomonas reinhardtii. We characterized their activity using a customized photosynthetic hydrogen production in-vivo assay to test whether the improved variant could maintain a greater fraction of its activity following oxygen exposure. We found that the mutated variant exhibited a superior oxygen tolerance while persevering its photosynthetic performance in terms of hydrogen production yield. Importantly, we show for the first time that this approach can potentially address the inherent O2 sensitivity of [FeFe]-Hydrogenases for photosynthetic hydrogen production.  相似文献   

2.
In Chlamydomonas reinhardtii, prolonged anaerobiosis leads to the expression of enzymes belonging to various fermentative pathways. Among them, oxygen-sensitive hydrogenases (HydA1/2) catalyze the synthesis of molecular hydrogen from protons and reduced ferredoxin in the stroma. In this work, by analyzing wild type and mutants affected in H2 production, we show that maximal PSII photosynthetic electron transfer during the first seconds of illumination after a prolonged dark-anaerobiosis period is linearly related to hydrogenase capacity. Based on the specific chlorophyll fluorescence induction kinetics typical of hydrogenase-deficient mutants, we set up an in vivo fluorescence imaging screening protocol allowing to isolate mutants impaired in hydrogenase expression or activity, as well as mutants altered in related metabolic pathways required for energy production in anaerobiosis. Compared to previously described screens for mutants impaired in H2 production, our screening method is remarkably fast, sensitive and non-invasive. Out of 3000 clones from a small-sized insertional mutant library, five mutants were isolated and the most affected one was analyzed and shown to be defective for the hydrogenase HydG assembly factor.  相似文献   

3.
Biological hydrogen generation from phototrophic organisms is a promising source of renewable fuel. The nuclear-expressed [FeFe] hydrogenase from Chlamydomonas reinhardtii has an extremely high turnover rate, and so has been a target of intense research. Here, we demonstrate that a codon-optimized native hydrogenase can be successfully expressed in the chloroplast. We also demonstrate a curiously strong negative selective pressure resulting from unregulated hydrogenase expression in this location, and discuss management of its expression with a vitamin-controlled gene repression system. To the best of our knowledge, this represents the first example of a nuclear-expressed, chloroplast-localized metalloprotein being synthesized in situ. Control of this process opens up several bioengineering possibilities for the production of biohydrogen.  相似文献   

4.
[Fe–Fe] hydrogenases, with hydrogen evolution activities outperforming [Ni–Fe] hydrogenases by 3–4 orders of magnitude, are still the most promising enzyme class for hydrogen production purposes. For Chlamydomonas reinhardtii [Fe–Fe] hydrogenase HydA1 the question of catalytic activity and electron transport is of main importance. Here we report the characterization of two mutant forms of C. reinhardtii HydA1. An aspartic acid in place of arginine171 leads to a six-fold increase of the catalytic activity in comparison to the wild type protein during methyl viologen-dependent hydrogen production. Tryptophan in position 171 does not result in any change in methyl viologen-induced activity. At the same time these mutations lead to a strong decrease in ferredoxin-dependent hydrogen production while the catalytic center of mutant forms stays intact. The localization of this amino acid (arginine171) in the environment of CrHydA1 H-cluster indicates that the limitation of the catalytic activity of this hydrogenase is due to the electron transfer step to the catalytic center where the reduction of protons takes place.  相似文献   

5.
The green alga Chlamydomonas reinhardtii is capable of photoproducing molecular hydrogen following sulphur deprivation, which results in anaerobiosis and a suppression of oxygen evolution and thus an alleviation of the inhibitory effect of oxygen on the hydrogenase. At the same time it transiently maintains a limited supply of electrons arising from photosystem II (PSII) to the hydrogenase (Melis and Happe Plant Physiol 2001; 127:740–748). In this work, using fast chl a fluorescence and P700 measurements, we show that ascorbate (Asc), a naturally occurring PSII alternative electron donor, is capable of donating electrons to PSII in heat-treated and sulphur-deprived cells and this can be significantly accelerated by supplementing the culture with 10 mM Asc. It also enhances, about three-fold, the photoproduction of hydrogen in cells subjected to sulphur deprivation as shown by gas chromatography. Similar stimulation was obtained in the presence of diphenylcarbazide (DPC), an artificial PSII electron donor. Asc and DPC also facilitated the anaerobiosis of cells, probably via super reducing the oxygen evolving complex while feeding electrons to PSII reaction centres and the linear electron transport chain, and ultimately to the hydrogenase – as shown by the significant DCMU-sensitivity of the light-induced Asc- and DPC-dependent re-reduction of P700+ and hydrogen evolution.  相似文献   

6.
The green alga Chlamydomonas reinhardtii has the ability to produce clean and renewable molecular hydrogen through the biophotolysis of water. Hydrogen production takes place under anaerobic conditions, which may be imposed metabolically by depriving the algae of sulphur. Sulphur-deprivation typically requires the spatial and temporal separation of the algal growth and hydrogen production stages. This would typically require separate photobioreactors for each stage as well as a costly and energy intensive medium exchange technique such as centrifugation, making the process difficult to scale up.  相似文献   

7.
We have previously created and expressed a chimeric polypeptide joining the PsaC subunit of Photosystem I (PSI) to the HydA2 hydrogenase of Chlamydomonas reinhardtii and demonstrated that it assembles into the PSI complex and feeds electrons directly to the hydrogenase domain, allowing for prolonged photobiological hydrogen production. Here we describe a new PSI-hydrogenase chimera using HydA1, the more abundant and physiologically active endogenous hydrogenase of this alga. When the PsaC-HydA1 polypeptide was expressed in a C. reinhardtii strain lacking endogenous hydrogenases, it was assembled into active PSI-HydA1 complexes that were accumulated at a level ~75% that of PSI, which is ~5 times higher than the PSI-HydA2 chimera. Hydrogen production by the chimera could be restored after complete inactivation by oxygen without requiring new synthesis of PSI or the PsaC-HydA1 polypeptide, demonstrating that the complex could be repaired in vivo. The PSI-HydA1 chimera reduces ferredoxin in vivo to such an extent that it can drive the Calvin-Benson-Bassham cycle, leading to high O2 production rates, and eventually resulting in inactivation of the hydrogenase; use of media that drastically diminished CO2 fixation and an O2-scavenging material allowed H2 production for at least 4 days.  相似文献   

8.
The direct relationship between hydrogenase gene conformation and its function in green alga Chlamydomonas reinhardtii has been investigated. We have analyzed the conformation in the 29 kilobase (kb) chromosome region containing [FeFe]-hydrogenase gene (hydA1) of C. reinhardtii in aerobic and anaerobic conditions using chromosome conformation capture technique (3C). The results showed a loop organization in the [FeFe]-hydrogenase gene region under aerobic conditions when the hydrogenase gene is silenced. In contrast, under anaerobic conditions, when the hydrogenase gene is active, no loop conformation in the gene region is present.  相似文献   

9.
The present study investigated the influence of increase in intracellular [FeFe] hydrogenase levels, in Enterobacter cloacae IIT-BT 08, on the formation of molecular hydrogen. The hydA gene from E. cloacae IIT-BT 08 was successfully amplified and cloned downstream of a tac promoter in an Escherichiacoli-Enterobacter reconstructed pGEX-Kan shuttle vector and introduced into E. cloacae. Finally E. cloacae strain carrying multiple copies of pGEX-Kan-hydA vector was developed. Homologous overexpression of the [FeFe] hydrogenase gene increased the hydrogenase activity by1.3-fold as compared to the wild type. SDS-PAGE confirmed the successful expression of the GST-tagged hydA protein. The hydrogen yield and rate of production in recombinant strain were found to be 1.2-fold and 1.6-fold higher, respectively, compared to the wild type strain. This was found to be concomitant with the shift in the metabolic pathway. In addition, feasibility of using cheese whey as a substrate for biohydrogen production and the effect of its supplementation with yeast extract as nitrogen source was studied for both the wild type and the recombinant strain. It was found that supplementation with 0.3% (w/v) yeast extract enhanced hydrogen production from whey. Further, the yield and rate of hydrogen production from the recombinant was found to be more promising as compared to the wild type.  相似文献   

10.
This article explores the possibility of demonstrating sustainable photohydrogen production using Chlamydomonas reinhardtii when grown in sulfur deprived photoautotrophic condition. The hydrogen evolving capability of the algal species was monitored based on alternating light and dark period. Investigation was carried out during the day time in order to exploit the solar energy for meeting the demand of the light period. The results showed that when the reactor was operated at varying photoperiod namely 2, 3 and 4 h of alternating light and dark period, the gas generation was found to be 32 ± 4, 63 ± 7 and 52 ± 5 mL/h, while the corresponding hydrogen content was 47, 86 and 87% respectively. Functional components of hydrogen generation reaction centers were also analyzed, which showed that the PS(I) reaction centers were involved in hydrogen production pathway, as the light absorption by PS(I) was prerequisite for hydrogen generation under sulfur deprived photoautotrophic condition. The findings showed a higher gas yield and hydrogen content under dark period, whereas under light period the gas content was below detectable level for hydrogen due to the reversible hydrogenase reaction.  相似文献   

11.
In this study, marine microalgae Chlorella pyrenoidosa produced 186 ml H2/l under nitrogen deprivation in natural seawater, and adding 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to medium reduced the total volume of hydrogen production by 85%. This suggested water was the main electron donor for hydrogenase. An active starch accumulation was observed during the first two days in nitrogen deprivation. But the starch content in cell decreased only by 7% at the end of the hydrogen evolution stage. This was shown the absence of a large contribution of starch to the hydrogen production by C. pyrenoidosa in nitrogen deprivation. Different from the hydrogen production by Chlamydomonas reinhardtii under sulfur deprivation condition, the concentration of acetate in the medium decreased not only at the stage of oxygen consumption but also during the stage of hydrogen evolution by C. pyrenoidosa. Thus, acetate is involved not only in the establishment of anaerobiosis but also plays an important role in the production of hydrogen by C. pyrenoidosa as an exogenous electron donor.  相似文献   

12.
In this study, recombinant plasmid was constructed to analyze the effect of hydrogen production on the expression HupSL hydrogenase isolated from Rhodobacter sphaeroides in Escherichia coli. Although most of recombinant HupSL hydrogenase was produced as inclusion bodies the solubility of the protein increased significantly when the expression temperature shifted from 37 °C to 30 °C. Hydrogen production by expression of HupSL hydrogenase from recombinant E. coli increased 20.9-fold compared to control E. coli and 218-fold compared to wild type R. sphaeroides under anaerobic dark condition. The results demonstrate that HupSL hydrogenase, consisting of small and large subunits of hydrogenase isolated from R. sphaeroides, increases hydrogen production in recombinant E. coli. In addition conditions for enhancing the activity of HupSL hydrogenase in E. coli were suggested and were used to increase bacterial hydrogen production.  相似文献   

13.
The transgenic alga lba of Chlamydomonas reinhardtii yielded H2 with 50%–180% higher than the control strain. Further experiments showed that photosynthetic rates and photosynthetic reaction center II's photochemical capacities of the transgenic algae obviously decreased 33.4%–85.9% and 30.0%–51.7%, respectively, compared with those of the control. On the contrary, respiration rates of the transgenic algae significantly increased, with 40.0%–200.0% higher than those of the control. Furthermore, starch contents of the transgenic algae were also improved significantly by 79.1%–592.8% compared with the control. Therefore, the reason of H2 yield improvement of the transgenic alga lba is not only due to its decrease of photosynthetic capacity and increase of the respiration rate, but also due to the metabolic changes related to starch metabolism, photosynthesis and respiration which is possibly caused by hetero-expression of lba gene in chloroplasts of C. reinhardtii, indicating the potential of utilization of lba gene to improve hydrogen yield of micro-green algae.  相似文献   

14.
In the present investigation, we report the growth and hydrogen production of two wild type Chlamydomonas reinhardtii strains isolated from a tropical oxidation pond in Costa Rica. The performance of these two new isolates was compared to that of Chlamydomonas reinhardtii CC124. All the strains were grown both in conventional Tris-Acetate-Phosphate medium (TAP) and in a commercial fertilizer medium (NPK 20-20-20). The growth of the new two isolates in medium formulated with fertilizer was higher than that attained with the reference strain (CC124). However, the hydrogen production performance of the strain CC124 in TAP-S and fertilizer were comparable, while the two new strains performed better in fertilizer, although the total hydrogen production was lower than that achieved with CC124. By using fertilizer it is possible to reduce the cost of chemical reagents by about 63% compared to TAP. Another advantage of the fertilizer is that it does not contain sulfur, therefore it can be directly used for hydrogen production using the Melis protocol.  相似文献   

15.
The green alga Chlamydomonas reinhardtii can produce hydrogen gas (H2) in the presence of the proton uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The addition of 15 μM CCCP to the algal cultures led to 13-fold increase in H2 photoproduction compared to the control cultures without CCCP treatment. CCCP completely inhibited the photochemical activity of photosystem (PS) II under illumination. In order to better understand metabolic conditions necessary for sustained H2 production, we have used gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF) for metabolomics analysis that is independent of nutritional stress, specifically, sulfur deprivation, which had been used previously to induce H2 photoproduction. Even 10 min after addition of CCCP, metabolites from many metabolic modules were found drastically decreased, including levels of free amino acids, unsaturated free fatty acids and nucleotides. During prolonged CCCP exposure H2 production was found to be stable for at least 12 h with a continued increase in levels of free fatty acids. These results indicate that CCCP might become a useful treatment for production of biohydrogen in reactors. The increase in fatty acid production might then be a useful addition for production of carbon-derived biofuels.  相似文献   

16.
The photomixotrophic hydrogen production was investigated in sulfur deprived Chlamydomonas reinhardtii cultures. The cultures were exposed to continuous illumination of various light intensities in 27-day batches. Light intensity of 70 × 2 ??E m−2 s−1 was selected for hydrogen production. Subsequent experiments involving 27-day long light:dark cycles were conducted at the selected light intensity. The cycles consisted of hour divisions (h:h; 18:6, 14:10, 12:12) or minute divisions (min:min; 45:15, 35:25, 30:30). The results showed an adverse effect of the light:dark cycles on hydrogen production. All experiments, irrespective of the type of illumination indicated that cultures needed a lag phase for production and the highest hydrogen production was obtained during first 7-10 days of production reaching a peak in the first 5 days.  相似文献   

17.
Renewable energy production using microorganisms is one of the challenging issues for environmental sustainability. Algal hydrogen (H2) production has often been achieved by sulfur (S) and chloride ion (Cl?) deprivation in a growth medium; however, it may not be realistic to control S or Cl? concentrations in natural sources (e.g., wastewater). In this study, two different green algal species, Chlamydomonas reinhardtii and Chlorella sorokiniana were selected and their photosynthetic activities were compared with different acetate/Cl? ratios both in batch and continuous modes. At 150 of acetate/Cl? ratio, the H2 production rates were 0.25–0.33 μmol L?1 min?1 for C. sorokiniana and 0.20–0.38 μmol L?1 min?1 for C. reinhardtii, respectively. The hydrogenase (HydA) reactivation and photosystem II (PSII) inhibitor test revealed that biohydrogen production by algae is due to photosynthetic activity. It was found that maintaining acetate/Cl? ratios greater than 60–100 leads to continuous O2 depletion and thus renewable H2 production for both algal species. Molecular dynamics (MD) simulations of hydrogen bonding between Yz and His190 in PSII supported O2 inhibition using acetate. Using fermenter effluents, C. sorokiniana and C. reinhardtii showed a successful continuous H2 production of ~80 μmol L?1 and ~95 μmol L?1, respectively, for 15 days.  相似文献   

18.
The genes coding for two PII-like proteins, GlnB and GlnK, which play key roles in repressing the nitrogenase expression in the presence of ammonium ion, were interrupted from the chromosome of Rhodobacter sphaeroides. The glnB–glnK mutant exhibits the less ammonium ion-mediated repression for nitrogenase compared with its parental strain, which results in more H2 accumulation by the mutant under the conditions. Rhodospirillum rubrum produces H2 by both nitrogenase and hydrogenase. R. rubrum containing the recombinant pRK415 with an insert of hydC coding for its own Fe-only hydrogenase showed twofold higher accumulation of H2 in the presence of pyruvate under photoheterotrophic conditions, which was not observed in the absence of pyruvate. The same was true with R. rubrum containing the recombinant pRK415 cloned with hydA coding for Fe-only hydrogenase of Clostridium acetobutylicum. Thus, Fe-only hydrogenase requires pyruvate as an electron donor for the production of H2.  相似文献   

19.
Three bacteria, named L2, L3 and L4, were isolated from contaminated cultures of Chlamydomonas reinhardtii strain cc849 in laboratory. The phylogenetic analysis based on 16S rDNA sequences showed that L2, L3 and L4 belonged to genus Stenotrophomonas, Microbacterium and Pseudomonas, respectively. The co-cultivation of isolated L2, L3 and L4 with purified algae, respectively, demonstrated that moderate bacterial concentration did not affect algal growth significantly but improved algal H2 production obviously. The maximal H2 yields were gained by the co-culture of algae with L2 or L4, about 4.0 times higher than that of the single algal culture. Increased respiration rate or O2 consumption was the main reason for the enhancement of H2 yield of the co-cultures.  相似文献   

20.
In this study, the photosynthetic hydrogen production rates by some strains of green microalgae were investigated. Three strains of Chlorella isolated from arid soil and foggaras's water in the Algerian Sahara were used. Chlorella sorokiniana strain Ce, Chlorella salina strain Mt and Chlorella sp strain Pt6 produced hydrogen gas under sulphur-deprived conditions, but its rate was dependent on strain type and oxygen partial pressure in medium. In C. sorokiniana strain Ce, the maximum value of hydrogen accumulated was 147 ml at 222 h at 2% of O2 pressure. Compared to C. sorokiniana strain Ce, C. salina strain Mt and Chlorella sp strain Pt6 produced less amount of hydrogen, but they were able to sustain with an O2 partial pressure of up to 11–15.4%. Our data were compared with hydrogen production by Chlamydomonas reinhardtii. In this communication, the relationship between physiological behaviour, biochemical characteristic (starch and protein) and rates gas production (O2 and H2) was also specified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号