首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ferrite/reduced graphene oxide (rGO) composites have attracted increasing attention due to the combination of the dielectric loss of rGO and the magnetic loss of ferrites. In this paper, pod-like 3D Ni0.33Co0.67Fe2O4@rGO composites were prepared using a solvothermal reaction followed by cold quenching. The structures and morphologies of as obtained composites were characterized using X-ray diffractometer, Raman microscope, photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The Ni0.33Co0.67Fe2O4 microspheres with a diameter of 100–150?nm were wrapped in rGO rolls due to the shrinkage of rGO in liquid nitrogen. The rGO sheets with ferrite microspheres wrapped in form the pod-like 3D network morphology. The minimum reflection loss of as-prepared composites reaches ?47.5?dB and the absorption bandwidth (RL<?10?dB) is 5.02?GHz. The composites show much better absorbing performances than pure Ni0.33Co0.67Fe2O4 microspheres and Ni0.33Co0.67Fe2O4-rGO mixture formed by mechanically blending of cold quenched pure rGO and ferrite microspheres.  相似文献   

2.
《Ceramics International》2019,45(11):13894-13902
Tailoring transition-metal oxide nanoparticles with two-dimensional carbon has become a favorite way to improve their electrochemical performance. In this study, a composite of reduced graphene oxide was anchored by Co3O4 nanocubes and easily prepared with the assistance of polydopamine (PDA), using a combination of hydrothermal reaction and pyrolysis (Co3O4@PDA-rGO). Polydopamine, which possesses abundant catechol and amine groups, could be easily grafted onto graphene oxide to reduce the aggregation of graphene particles. Furthermore, PDA provided active sites, i.e., catechol and amine groups, which coordinated with Co2+, enabling enrichment of metal ions on the surface of graphene. After the pyrolysis of Co2+-containing PDA-grafted graphene at 400 °C, the Co2+ ions were converted into Co3O4 nanocubes, while the PDA carbonized to form N-doped porous carbon on the surface of graphene. The resulting product, Co3O4@PDA-rGO, demonstrated extraordinary supercapacitive behavior with good cycling stability owing to its unique porous structure as well as the intimate contact between Co3O4 and the carbon matrix.  相似文献   

3.
Mn3O4/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn3O4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn3O4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn3O4/graphene nanocomposites exhibited a high specific capacitance of 175 F g−1 in 1 M Na2SO4 electrolyte and 256 F g−1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn3O4/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn3O4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.  相似文献   

4.
Herein, we report a facile homogeneous urea – assisted hydrothermal approach for the design of CoFe2O4/Co3O4 nano hetrostructure. A variation in Co concentration leads to smartly designed composite material namely CFC-11 and CFC-12 where CFC-12 appreciates the benefits of both CoFe2O4 and Co3O4 nanoparticles. The physico – chemical properties of as developed materials were investigated by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), X-ray photoelectron microscopy (XPS) and Raman spectroscopy. The specific surface area and pore size distribution was determined by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halendo (BJH) respectively. Magnetic measurements via. vibrating sample magnetometer (VSM) demonstrate that saturation magnetization decreases with the incorporation of Co3O4 antiferromagnetic nanoparticles. To explore the utility of as designed nano-hetrostructures as supercapacitor electrodes, we employed cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS) measurements. A high specific capacitance of 761.1?F?g?1 at 10?mV?s?1, admirable cyclic durability of 92.2% and a low resistance value obtained from impedence measurements was observed for CFC-12. The favorable performance demonstrates the synergistic effect of CoFe2O4 and Co3O4 nanoparticles and thus promise an excellent material for energy storage devices.  相似文献   

5.
Graphene nanosheet (GNS)/Co3O4 composite has been rapidly synthesized by microwave-assisted method. Field emission scanning electron microscopy and transmission electron microscopy observation reveals the homogeneous distribution of Co3O4 nanoparticles (3-5 nm in size) on graphene sheets. Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. A maximum specific capacitance of 243.2 F g−1 has been obtained at a scan rate of 10 mV s−1 in 6 M KOH aqueous solution for GNS/Co3O4 composite. Furthermore, the composite exhibits excellent long cycle life along with ∼95.6% specific capacitance retained after 2000 cycle tests.  相似文献   

6.
Uniform and porous Mn-doped Co3O4 microspheres (Mn@Co3O4 MSs) assembled with many nanoparticles (NPs) were prepared through an initially solvothermal reaction and subsequent annealing treatment at 550 oC in air. These Mn@Co3O4 MSs had an average diameter of about 9?μm and possessed a BET specific surface area of 70.4?m2/g. The pore diameter was mainly centered at 12.3?nm and the mean pore size was measured to be 15?nm. When the Mn@Co3O4 MSs were used as electrode material for supercapacitors, the electrochemical performances were assessed in 2?M KOH aqueous solution using a typical three-electrode configuration. Such Mn@Co3O4-MSs-modified electrode exhibited a highly specific capacitance of 773?F/g at 1 A/g, 62.7% rate capability at 16 A/g, and 73.9% capacitance retention of its original value after 5000 cycles at 5 A/g. The excellently electrochemical behaviors indicate that such Mn-doped Co3O4 MSs can be used as a superior electrode material for advanced supercapacitors in the future. The current synthesis strategy is facile and can be further employed to prepare other electrode materials with outstanding electrochemical performances.  相似文献   

7.
Cobalt oxide (Co3O4) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 °C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L−1 KOH solution. The electrochemical data demonstrate that the Co3O4 nanotubes display good capacitive behavior with a specific capacitance of 574 F g−1 at a current density of 0.1 A g−1 and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co3O4 nanotubes can be promising electroactive materials for supercapacitor.  相似文献   

8.
《Ceramics International》2021,47(19):27210-27216
A composite of Co3O4/holey graphene (Co3O4/HG) was prepared via a facile hydrothermal route, and was then processed into an electrode by an electrophoretic deposition process. Holey graphene (HG) wrapped Co3O4 to form a 3D skeleton network, thereby providing high electrical conductivity, and the holes in HG could further shorten the electrolyte ion diffusion pathway. Therefore, by adjusting the mass ratio of Co3O4 to HG, the Co3O4/HG composite afforded an enhanced capacitance of 2714 F g−1 (at a current density of 1 A g−1), which is 20 times higher than that of pure Co3O4. To further explore the practical applications of Co3O4/HG, a symmetric supercapacitor employing Co3O4/HG was fabricated. The supercapacitor functioned stably at potentials up to 1.2 V, with an enhanced energy density of 165 Wh kg−1 and a high power density of 0.6 kW kg−1 at 1 A g−1.  相似文献   

9.
《Ceramics International》2019,45(12):14634-14641
Co3O4/melamine-derived carbon sponge (MCS) nanocomposite in which wrinkled ball-in-dodecahedral Co3O4 nanoparticles derived from ZIF-67 were homogeneously dispersed on the interconnected MSC was fabricated via a simple immersion and thermolysis route. As-prepared ultralight Co3O4/MCS possessed mechanically robust characteristic and unique 3D macroporous framework anchored with corrugated Co3O4 dodecahedra. Utilized as a pseudocapacitor electrode, Co3O4/MCS hybrid exhibited a great specific capacitance of 1409.5 F g−1 at the current density of 0.5 A g−1 and excellent long-term cycling stability of 93.2% after 1000 charge/discharge cycles, which might be ascribed to the synergistic effect of the inherent high redox activity from Co3O4 polyhedra combined with excellent electrical conductivity of MCS. This work demonstrates that tunable structure design and rational morphology control are efficient approaches for manufacturing novel electrode materials with extraordinary electrochemical performance.  相似文献   

10.
Co3O4 thin film is synthesized on ITO by a chemical bath deposition. The prepared Co3O4 thin film is characterized by X-ray diffraction, and scanning electron microscopy. Electrochemical capacitive behavior of synthesized Co3O4 thin film is investigated by cyclic voltammetry, constant current charge/discharge and electrochemical impedance spectroscopy. Scanning electron microscopy images show that Co3O4 thin film is composed of spherical-like coarse particles, together with some pores among particles. Electrochemical studies reveal that capacitive characteristic of Co3O4 thin film mainly results from pseudocapacitance. Co3O4 thin film exhibits a maximum specific capacitance of 227 F g−1 at the specific current of 0.2 A g−1. The specific capacitance reduces to 152 F g−1 when the specific current increases to 1.4 A g−1. The specific capacitance retention ratio is 67% at the specific current range from 0.2 to 1.4 A g−1.  相似文献   

11.
Hierarchical porous nickel cobaltite (NiCo2O4) nanomaterials were synthesized via a hard-templating route. The obtained materials consist of nanostructured cubic NiCo2O4 spinels and a spot of cubic NiO nanoparticles, and the materials display a typical hierarchical porous structure. The NiCo2O4 electrode displays quasireversible dynamics characteristics, mainly Faradaic capacitance behavior and capacitance relaxation feature. The NiCo2O4 electrode exhibits an excellent long cycling behavior with no capacitance decays during 5,000 cycles at a current density of 2?A?g?1 in 1?M KOH electrolytes, and the NiCo2O4 electrode exhibits both high power and energy performances even after 5,000 cycles with respective value of 1,758?W?kg?1 and 8.3?W?h?kg?1 in 1?M KOH electrolytes, indicating that the NiCo2O4 nanomaterials are promising candidates for electrochemical capacitors.  相似文献   

12.
The development of hierarchical, porous film based current collector has created huge interest in the area of energy storage, sensor, and electrocatalysis due to its higher surface area, good electrical conductivity and increased electrode-electrolyte interface. Here, we report a novel method to prepare a hierarchically ramified nanostructured porous thin film as a current collector by dynamic hydrogen bubble template electro-deposition method. At a first time, we report a porous 3D-Ni decorated with ZnCo2O4 and Fe2O3 by simple, low-cost electrochemical deposition method. The fabricated porous 3D-Ni based electrodes showed an excellent electrochemical property such as high specific capacitance, excellent rate capability, and good cycle stability. The asymmetric solid-state supercapacitor device was fabricated using porous, 3D Ni decorated with ZnCo2O4 and Fe2O3 as the positive and negative electrodes. The fabricated ZnCo2O4//Fe2O3 asymmetric device delivered an areal capacitance of 92?mF?cm?2 at a current density of 0.5?mA?cm?2 with a maximum areal power density of 3?W?cm?2 and areal energy density of 28.8?mWh?cm?2. The higher performances of porous, 3D current collector have a huge potential in the development of high performance supercapacitor.  相似文献   

13.
The Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite for electromagnetic wave absorption was successfully synthesized from metal chlorides solutions and graphite powder by a simple and rapid microwave-assisted polyol method via anchoring the Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on the layered graphene sheets. The Fe3+, Co2+, Ni2+ and Mn2+ ions in the solutions were attracted by graphene oxide obtained from graphite and converted to the precursors Fe(OH)3, Co(OH)2, Ni(OH)2, and Mn(OH)2 under slightly alkaline conditions. After the transformations of the precursors to Co-Ni-Mn ferrites and conversion of graphene oxide to graphene under microwave irradiation at 170?°C in just 25?min, the Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite was prepared. The composition and structure of the nanocomposite were characterized by X-ray diffraction (XRD), inductive coupled plasma emission spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), transmission electron microscopy (TEM), etc. It was found that with the filling ratio of only 20?wt% and the thickness of 2.3?mm, the nanocomposite showed an ultra-wide effective absorption bandwidth (less than ?10?dB) of 8.48?GHz (from 9.52 to 18.00?GHz) with the minimum reflection loss of ??24.29?dB. Compared to pure graphene sheets, Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles and the counterparts reported in literature, the nanocomposite exhibited much better electromagnetic wave absorption, mainly attributed to strong wave attenuation, as a result of synergistic effects of dielectric loss, conductive loss and magnetic loss, and to good impedance matching. In view of its thin thickness, light weight and outstanding electromagnetic wave absorption property, the nanocomposite could be used as a very promising electromagnetic wave absorber.  相似文献   

14.
Carbon-encapsulated Co3O4 nanoparticles homogeneously embedded 2D (two-dimensional) porous graphitic carbon (PGC) nanosheets were prepared by a facile and scalable synthesis method. With assistance of sodium chloride, the Co3O4 nanoparticles (10–20 nm) with magnetic loss were well encapsulated by onion-like carbon shells homogeneously embedded porous graphitic carbon nanosheets (thickness of less than 50 nm) with dielectric loss. In the architecture, the well impedance matching for microwave absorption can be obtained by the synergetic effect between Co3O4 nanoparticles and encapsulated porous carbon nanosheets. The minimum reflection loss value of −32.3 dB was observed at 11.4 GHz with a matching thickness of 2.3 mm for 2D Co3O4@C@PGC nanosheets. The 2D Co3O4@C@PGC nanosheets can be used as a kind of candidate for microwave absorbing materials.  相似文献   

15.
A novel three-dimensional (3D) porous structured Co3O4 was prepared by electrodeposition combined with thermal-treatment method. The electrochemical properties of as-prepared 3D porous Co3O4 were closely related to its morphology and structure which can be modified by various thermal-treatment temperatures. The 3D porous Co3O4 prepared at 300 °C exhibited smaller crystallite size and higher capacity compared to 400 °C as well as 500 °C. As used in lithium-ion batteries, the porous Co3O4 anodes delivered a high reversible capacity of about 1100 mAh g−1 with no obvious capacity fading up to 50 cycles and exhibited higher rate capability compared with Co3O4 foil anodes. The enhanced electrochemical performances of 3D porous Co3O4 anodes are attributed to its unique 3D porous structure which can offer a large materials/electrolyte contact area and accommodate the strain induced by the volume change during cycling.  相似文献   

16.
CoMgAl layered double hydroxides were prepared as catalysts for the in situ synchronous growth of graphene and single-walled carbon nanotubes (SWCNTs) from methane by chemical vapor deposition. The as-calcined CoMgAl layered double oxide (LDO) flakes served as the template for the deposition of graphene, and Co nanoparticles (NPs) embedded on the LDOs catalyzed the growth of SWCNTs. After the removal of CoMgAl LDO flakes, graphene (G)/SWCNT/Co3O4 hybrids with SWCNTs directly grown on the surface of graphene and 27.3 wt.% Co3O4 NPs encapsulated in graphene layers were available. Further removal of the Co3O4 NPs by a CO2-oxidation assistant purification method induced the formation of G/SWCNT hybrids with a high carbon purity of 98.4 wt.% and a high specific surface area of 807.0 m2/g. The G/SWCNT/Co3O4 hybrids exhibited good electrochemical performance for pseudo-capacitors due to their high Co3O4 concentration and the high electrical conductivity of SWCNTs and graphene. In another aspect, the G/SWCNT hybrids can be used as excellent electrode materials for double-layer capacitors. A high capacity of 98.5 F/gelectrode was obtained at a scan rate of 10 mV/s, 78.2% of which was retained even when the scan rate increased to 500 mV/s.  相似文献   

17.
Ultrathin scale-like nickel cobaltite (NiCo2O4) nanosheets supported on nitrogen-doped reduced graphene oxide (N-rGO) are successfully synthesized through a facile co-precipitation of Ni2+ and Co2+ in the presence of sodium citrate and hexamethylenetetramine and subsequent calcination treatment. The composition and morphology of NiCo2O4 nanosheets@nitrogen-doped reduced graphene oxide (denoted as NiCo2O4 NSs@N-rGO) were characterized by Scanning electron microscope, Transmission electron microscope, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller and thermogravimetric analysis. The thickness of NiCo2O4 nanosheets anchored on the reduced graphene oxide is around 4 nm. The capacitance of NiCo2O4 NSs@N-rGO is evaluated by cyclic voltammogram and galvanostatic charge/discharge with the result that the NiCo2O4 NSs@N-rGO could deliver a specific capacitance of 1540 F g−1 after 1000 cycles at 10 A g−1.  相似文献   

18.
Ni0.5Co0.5Fe2O4/graphene composites were synthesized successfully via one-step hydrothermal method. The crystal structure, morphology and corresponding elemental distribution, electromagnetic parameters and microwave absorption performances of the as-prepared composites were measured by XRD, SEM, TEM and VNA, respectively. The results indicated that the microwave absorbing performance can be obviously enhanced through the addition of graphene in a suitable range, the magnetic loss plays a dominant contribution for the microwave absorption of composites. The maximum reflection loss of ?30.92?dB at 0.84?GHz with a ?10?dB bandwidth over the frequency range of 0.58–1.19?GHz is obtained when the composite contains 12?wt% graphene and the thickness of sample is 4?mm. This investigation presents a simple method to prepare Ni0.5Co0.5Fe2O4/graphene composites with excellent microwave absorption performance in the low frequency band of 0.1–3?GHz.  相似文献   

19.
《Ceramics International》2019,45(10):13340-13346
In this work, we have described the simple preparation method of cobalt oxide nanocomposites where cobalt oxide nanoparticles were grown on the surface of carbon nanotube, graphene oxide and graphene (Co3O4@CNT, Co3O4@GO, Co3O4@G). The as-grown Co3O4@CNT, Co3O4@GO, Co3O4@G were investigated for H2O oxidation. The nanoparticles displayed high activity toward oxygen evolution. Further, the stability of the catalysts were tested in alkaline solution, which exhibited good stability. Among all nanoparticles, Co3O4@G exhibited higher current density at lower overpotential and also exhibited lower Tafel slope (157.1 mV dec−1) as compared to Co3O4@CNT and Co3O4@GO. The Co3O4@G delivered a current density of 10 mAcm−2 at 0.8 V (overpotential 535 V versus Ag/AgCl) in 0.1 M KOH solution, which is superior than many electrocatalysts reported for oxygen evolution so far. The good electrocatalytic performance might be due to the structural features of Co3O4@G, which cause enhancement of oxygen evolution activity.  相似文献   

20.
A porous nanowall Co3O4 film is prepared by a facile cathodic electrodeposition. The as-prepared porous nanowall Co3O4 film shows a net-like porous structure with huge porosity. The porous network is made up of free standing interconnected Co3O4 nanoflakes with a thickness of 20 nm. As cathode material for pseudocapacitors, porous nanowall Co3O4 film exhibits weaker polarization, higher electrochemical reactivity and better cycling performance as compared to the dense Co3O4 film. The specific capacitance of porous nanowall Co3O4 film is 325 F g−1 at 2 A g−1 and 247 F g−1 at 40 A g−1, respectively, much higher than that of the dense Co3O4 film (230 F g−1 at 2 A g−1 and 167 F g−1 at 40 A g−1). The better pseudocapacitive performances of the porous nanowall Co3O4 film are attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, and relaxes the volume change caused by the reaction during the cycling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号