首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高能量密度脉冲等离子体制备高硬耐磨TiN涂层   总被引:4,自引:0,他引:4  
用高能量密度脉冲等离子体于室温下在硬质合金刀具上成功淀积了高硬耐磨TiN涂层.实验结果表明,涂层与基体有强的结合力,纳米划痕实验临界载荷达90mN以上;TiN涂层具有很高的硬度和Young’s模量,分别达27和450GPa以上.涂层刀具切削实验表明,刀具可用于硬度高达HRC58-62的CrVVMn钢切削,且磨损量较低,寿命长.  相似文献   

2.
研究基体梯度结构对TiN涂层硬质合金力学和切削性能的影响;采用阴极弧蒸发涂层工艺分别在均质和梯度硬质合金基体上制备TiN涂层:运用金相观察、扫描电镜分析、三点抗弯强度测试、显微硬度测试和切削性能测试,研究基体梯度结构对TiN涂层硬质合金组织结构、力学性能和切削性能的影响.结果表明:基体结构梯度化后,TiN涂层表面形貌由平整状变为网状结构,显微硬度提高19%,抗弯强度提高6.1%;基体结构梯度化后,涂层硬质合金的结构发生变化、力学性能得到提高,涂层刀片的抗冲击性能和切削性能分别提高10%和15%左右.  相似文献   

3.
CrAlTiN及CrAlTiSiN纳米多层复合涂层的制备及力学性能   总被引:1,自引:0,他引:1  
以金属Cr和AlTi合金为靶材料,在沉积过程中引入SiH4气体,用自行设计的多靶阴极电弧离子镀系统在单晶硅和硬质合金衬底上沉积了CrAlTiN和CrAlTiSiN硬质涂层.通过X射线衍射(XRD)和透射电镜(TEM)分析涂层的组织和形貌,结果表明:衬底偏压和反应气体流量对膜层的力学性能有较大影响,在优化条件下得到CrAlTiN涂层的硬度为29 GPa.且CrAlTiSiN涂层为CrSiN和AlTiSiN组成的纳米多层复合涂层,随着SiH4流量的增加,薄膜中的硅含量明显增加,在优化条件下,涂层的显微硬度达到37 GPa,摩擦因数为0.58.刀具涂层检测试验表明,涂覆CrAlTiN涂层的铣刀使用寿命可提高3倍,而CrAlTiSiN涂层较CrAlTiN涂层还会进一步提高刀具使用寿命.  相似文献   

4.
目的提高涂层硬质合金刀具加工钛合金的切削性能及加工效率。方法采用化学机械抛光(Chemical Mechanical Polishing,CMP)对经过磨削加工的YG8硬质合金车削刀片前刀面进行抛光预处理,并使用CVD与PVD涂层工艺制备涂层。运用单因素试验法,对抛光涂层硬质合金刀片进行切削TC4钛合金的刀片耐用度试验,分析钛合金加工过程中刀具种类及切削参数变化对刀片耐用度的影响规律。采用扫描电子显微镜(SEM)和能谱仪(EDS)分析刀片的磨损机理。结果经过化学机械抛光处理后,硬质合金刀片的平均粗糙度由87 nm降低为19 nm,降低幅度达78.2%。相同切削参数时,抛光CVD硬质合金刀片的耐用度最大程度上比磨削CVD硬质合金刀片提高了75%,抛光PVD硬质合金刀片的耐用度最大程度上比磨削PVD硬质合金刀片提高了8.3%。可见采用化学机械抛光对硬质合金刀片进行加工是提高刀片表面平整度及耐用度的重要途径。结论抛光CVD硬质合金刀片的耐用度优于磨削CVD硬质合金刀片,抛光PVD硬质合金刀片的耐用度优于磨削PVD硬质合金刀片。  相似文献   

5.
目的为了提高涂层硬质合金刀具的切削性能,研究了物理气相沉积PVD法制备的涂层硬质合金铣刀在高速干式环境下的铣削性能。方法采用阴极电弧技术制备了TiN、TiAlN以及TiAlSiN涂层硬质合金铣刀刀头,通过一同沉积涂层的硬质合金圆片,间接测量得出涂层的显微硬度、厚度和平均摩擦系数,并以CoCrMo合金为切削对象,进行了PVD涂层与无涂层刀具高速铣削下的对比试验。结果TiAlSiN显微硬度最高达3800HV,摩擦系数达0.3,TiAlN涂层平均膜厚为2μm,间接测得TiN、TiAlN以及TiAlSiN涂层的结合力依次为60、58、42N。在三者的切削性能中,TiAlSiN涂层的切削性能比TiAlN和TiN涂层的好,同等切削参数时,TiN刀具的高速铣削时间最短,TiAlSiN涂层的平均磨损值为0.1895,TiN的平均磨损值为0.3047。结论涂层中添加Al、Si,极大地提高了刀具的使用性能,改善了刀具切削过程中的耐磨性、红硬性,极大地延长了刀具的使用寿命。TiAlSiN涂层的硬度高,耐磨损性好,切削性能好,适合高速铣削加工。  相似文献   

6.
Coatings like TiN or TiAlN are well established as hard and wear resistant tool coatings. These coatings often are prepared by PVD techniques like arc evaporation or d.c. magnetron sputtering. Typical micro hardness values of such hard coatings are in the range of 30 GPa. Compared to d.c. magnetron sputtering processes the pulsed magnetron sputter deposition technique could be shown as a clear advancement. Furthermore pure TiAlN hard coatings as well as TiAlN coatings modified by addition of elements like Si and Cr were prepared in order to improve the coating properties using the pulsed magnetron sputter technique in a batch coater equipped with 4 targets. Coatings prepared with the pulsed sputter process showed both high hardness and high wear resistance. The application potential of pulsed sputtered TiAlN coatings is demonstrated by turning test results of coated cemented carbide cutting inserts.Beside hardness and wear, other properties like adhesion or high temperature stability were determined. Cross sectional SEM images revealed the growth structure in dependence of the applied substrate bias and of the added elements. The chemical composition of the coatings was investigated by electron microprobe analysis and the phase and crystal size were determined by X-ray diffraction. Using the pulsed magnetron sputter process the coating properties, especially the hardness and the morphology, could be significantly improved. With indentation hardness values in the range of 40 GPa the region of super hard materials could be reached.  相似文献   

7.
Reactive plasma spray of TiN ceramic coating attracts much attention over the years because of its ability to deposit thick layers on various metal surfaces. However, some mechanical properties of the coating such as its hardness should be improved. In this study, initially a thin layer of titanium nitride was prepared on a titanium substrate during irradiation of titanium substrate by a thermal DC nitrogen-contained plasma jet. Then, during reactive plasma spraying, Ti particles were injected into plasma jet, converted to titanium nitride and huddled on to the substrate. This new hybrid method (primary plasma irradiation and post-reactive plasma spraying) for deposition of TiN coatings would combine the advantages of both plasma-enhanced chemical vapor deposition and reactive plasma spraying methods in part. It resulted in a thick and hard layer of titanium nitride film. Sample produced by this method was analyzed with x-ray diffraction confirming titanium nitride production. Vickers hardness was measured using optical microscopy which was around 1319 Hv300g. To study the cross section of the layer, optical microscopy and scanning electron microscopy (SEM) were used.  相似文献   

8.
TiAlN,TiAlSiN涂层的制备及其切削性能   总被引:4,自引:3,他引:1  
陈强  张而耕  张锁怀 《表面技术》2017,46(1):118-124
目的研究TiAlN及TiAlSiN涂层的微观结构及力学性能,以及硬质合金涂层刀具切削SUS304不锈钢的切削性能及磨损行为。方法采用阴极电弧离子镀技术在硬质合金试片及铣刀上分别制备纳微米TiAlN及TiAlSiN涂层。通过X射线荧光测量系统测量涂层的厚度,用扫描电镜(SEM)观察涂层表面形貌,用能谱仪(EDAX)分析涂层元素成分,用X射线衍射(XRD)分析涂层晶相结构,用纳米压痕仪表征涂层硬度,用洛氏硬度计定性测量涂层结合力,通过高速铣削试验探究涂层刀具的切削性能及磨损行为。结果 TiAlN及TiAlSiN涂层的厚度分别为3.32μm和3.35μm,表面致密、光滑,高分辨率(20 000×)下观察到涂层表面有液滴、针孔及凹坑存在。Si元素促进了Ti N(200)晶相的生长,晶粒尺寸减小,硬度增加。TiAlN及TiAlSiN涂层的显微硬度分别为29.6 GPa及37.7 GPa,结合力分别满足VDI-3198工业标准的HF3和HF1等级。在130 m/min的高速切削条件下,TiAlSiN涂层刀具寿命约为未涂层刀具的5倍,TiAlN涂层刀具的1.5倍。结论 Si掺杂制备的TiAlSiN涂层具有高的硬度及良好的抗粘附性,更适用于不锈钢材料的高速切削加工。  相似文献   

9.
METAL NITRIDE or carbide coatings on cutting toolsare effective ways of improving tool performance.Thedriving force for high productivity and precision inmetal machining has led to the requirement of acontinual improvement of conventional hard coatings.It is necessary that those attractive properties of hardcoatings could be simultaneously retained.Highhardness resists abrasive wear.High chemical orthermal stability reduces dissolution wear andmaintains physical properties at a high tempe…  相似文献   

10.
采用压痕实验、扫描电镜与激光Raman光谱分析,实验研究了酸浸硬质合金基底上金刚石涂层的附着力随沉积温度的变化.结果表明,涂层质量随沉积温度降低而显著恶化,涂层应力则随沉积温度提高而上升.从提高涂层附着力的角度考虑,存在一个最佳沉积温度.在较低的沉积温度下,涂层自身的质量较低、力学性能较差,在载荷作用下易于破坏.提高沉积温度,涂层自身的质量可得到改善,但基底中的钴向基底表面扩散的倾向加大,而且热应力增大,会严重降低涂层与基底的附着力.除硬质合金基底的预处理工艺外,沉积工艺对金刚石涂层的组织、性能以及附着力均有重要影响.  相似文献   

11.
This study investigated suitability of TiN and TiCN-coated cemented carbide tools in the machining of conventionally produced stainless steel with HIPed (Hot Isostatic Pressed) NiTi coating. Near-equiatomic nickel–titanium alloy (NiTi) has many attractive material properties, such as pseudo-elasticity and shape memory effects, which result into beneficial engineering properties, e.g. as cavitation resistant coatings in addition to its well-known shape memory properties. Stainless steels are often considered to be poorly machinable materials; materials with high elasticity are also difficult to machine. In drilling stainless steel with a pseudo-elastic coating material, machinability difficulties are caused by the high strength and work hardening rate of steel and the pseudo-elastic properties of the coating material. The machinability was studied by analyzing cemented carbide drills and chips. The interface between stainless steel and NiTi coating was examined with SEM (scanning electron microscopy) and EDS (energy dispersive spectroscopy) analysis. The effect of feed rate on chip formation and tool wear was analyzed. The cutting tests indicated that cutting speeds of 50 m/min, a feed rate of 0.1–0.2 mm/rev, and solid carbide drills can be applied, from a machinability standpoint. A HIPed pseudo-elastic coating decreases machinability. When effective cutting speeds and feed rates were utilized, optimal tool life was achieved without a decrease in coating properties.  相似文献   

12.
Binary Nb-N coatings, ternary Ti-Nb-N and Zr-Nb-N, and multi-layer TiN/NbN coatings consisting of up to 100 alternating TiN and NbN layers, were deposited onto WC-Co substrates, using two different vacuum arc deposition (VAD) systems: with and without magnetic guiding of the metal plasma flow. Binary Nb-N coatings were fabricated by deposition of metal plasma produced by a Nb cathode in a background of reactive nitrogen gas at different pressures, P. Ternary coatings were fabricated at co-deposition of plasmas originating from two different cathode materials. Multilayer coatings were fabricated by alternatively depositing plasmas of Ti and Nb in reactive nitrogen gas. The crystalline coating structure, phase composition, hardness and critical load for coating failure were studied.For binary Nb-N coatings fabricated using both deposition systems, the phase composition, the Vickers hardness, HV, and the critical load strongly depended on the deposition pressure. Using VAD with magnetic plasma guiding, the highest HV of ∼ 42 GPa was measured for coatings deposited at low nitrogen pressure. These coatings contained a hexagonal β-Nb2N phase and had a relatively low critical load. The highest critical load and HV ∼ 38 GPa were obtained for coatings consisted of a single phase NaCl-type cubic δ-NbN structure, deposited at a higher nitrogen pressure. The structure and properties of Nb-N coatings deposited using VAD without magnetic plasma guiding had a similar correlation with the deposition pressure, however, their hardness values were lower.Ternary Ti-Nb-N and Zr-Nb-N coatings fabricated by both deposition processes had a single phase cubic NaCl-type structure and the hardness higher than that of the binary nitrides TiN, ZrN and NbN. The hardest coatings, HV ∼ 51.5 Pa, deposited with magnetic plasma guiding had a single-phase cubic δ-(Ti,Nb)N structure and a Ti:Nb ratio of ∼ 50:50 (at.%).Multilayer coatings TiN/NbN consisting of 20-40 alternating TiN and NbN layers with total thickness of 4-5 μm increased the life time of cemented carbide cutting inserts at turning tough Ni-base alloys by 2-7 times relative to uncoated cutting tools, while conventional vacuum arc deposited TiN coatings were not effective in machining of these alloys.  相似文献   

13.
采用自行研制的强电流直流伸展电弧等离子体CVD设备对真空渗硼预处理的YG6刀片进行了金刚石涂层沉积,并对放于有效沉积区域不同位置沉积出的金刚石涂层刀片以及刀片自身不同位置之表面涂层的形貌、厚度、质量进行了分析、研究。结果表明:(1)、硬质合金工具强电流直流伸展弧等离子体CVD金刚石涂层的组织、形貌、厚度、质量都是均匀一致的。(2)、利用强电流直流伸展电弧等离子体CVD设备可进行硬质合金金刚石涂层的批量沉积。  相似文献   

14.
曾芳芳  邱联昌  吴立颖  谢静  杜勇 《表面技术》2023,52(8):1-26, 70
化学气相沉积技术(CVD)广泛应用于硬质耐磨涂层的生产中,该类涂层可大大提高硬质合金工具的耐磨性和寿命。综述了CVD涂层技术在硬质合金切削刀具中的应用研究进展,首先介绍了CVD涂层技术的原理及其发展历程;其次阐述了模拟计算方法(相图计算、流体力学计算、第一性原理计算、相场模拟、机器学习等)在CVD涂层中的应用;再次介绍了CVD涂层的沉积实验及结构和性能表征方法;最后列举了几种典型的硬质合金刀具用CVD涂层,以期为高性能涂层的智能设计、智能集成和智能研发提供新的思路:即把多尺度计算模拟、科学数据库和关键实验集成到硬质涂层开发的全过程中,通过对成分-工艺-结构-性能进行关联分析,将耐磨涂层的研发由传统经验或者半经验方式提升到科学的微结构智能设计上,以实现基体与涂层微结构调控和性能的协同优化,获得最佳的综合性能。  相似文献   

15.
Magnetron sputtered (Ti, Al) N monolayer and TiN/(Ti, Al) N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.  相似文献   

16.
Four nitride coatings (CrN, ZrN, CrAlN, and TiAlN) were deposited on YT15 cemented carbide by cathode arc-evaporation technique. Microstructural and fundamental properties of these nitride coatings were examined. Erosion wear tests were carried out, the erosion wear of these nitride coatings caused by abrasive particle impact was compared by determining the wear depth and the erosion rates of the coatings. The wear surface features were examined by scanning electron microscopy. Results showed that the coatings with Al (CrAlN and TiAlN) exhibited higher erosion wear resistance over those without Al (CrN and TiN). The H3/E2 of the coating seemed to play an important role with respect to its erosion wear in erosion tests. AlTiN and CrAlN coatings being with high H3/E2 exhibited lower erosion rates, while CrN coating with low H3/E2 showed higher erosion rates under the same test conditions. Analysis of eroded surface of the coatings demonstrated that the TiN and CrN coatings exhibited a typical brittle fracture induced removal process, while AlTiN and CrAlN coatings showed mainly micro cutting and cycle fatigue fracture of material removal mode.  相似文献   

17.
TiN/Ti(C,N)涂层的显微组织与力学性能   总被引:1,自引:0,他引:1  
采用磁控溅射在TNMG120408型号的硬质合金刀片上沉积了TiN/Ti(C,N)单层与多层涂层,通过XRD、SEM、纳米压痕、划痕仪与冲击测试等方法,比较分析了TiN/Ti(C,N)涂层的显微组织与力学性能。结果表明,TiN单层涂层的晶粒形貌为典型的喇叭口结构,Ti(C,N)单层涂层为平直的柱状晶结构;而TiN/Ti(C,N)多层涂层为柱状晶结构,形成了TiN、Ti(C,N)交替排列的结构。TiN与Ti(C,N)单层涂层均呈(220)生长织构,而TiN/Ti(C,N)多层涂层呈(111)生长织构。Ti(C,N)单层涂层表现出较好的硬度,而TiN/Ti(C,N)多层涂层则表现出与基体更好的结合力。  相似文献   

18.
TiN涂层的微观组织结构及力学性能分析   总被引:1,自引:1,他引:1  
陈利  汪秀全  尹飞  李佳 《硬质合金》2006,23(1):8-10
借助XRD、纳米压痕、SEM和划痕仪研究了采用磁控溅射在硬质合金基体上沉积的TiN、(Ti,Al)N单层和TiN/(Ti,Al)N多层涂层的组织结构和力学性能。研究表明:面心立方结构的TiN涂层晶粒形貌为典型的喇叭口结构,沿(200)、(111)择优生长;TiN涂层的硬度为24.6GPa;与硬质合金基体的结合强度约为62N。  相似文献   

19.
Four nitride coatings, TiN, TiAlN, AlTiN and CrAlN were deposited on YG6 (WC + 6 wt.% Co) cemented carbide by cathodic arc-evaporation technique. The friction and wear properties were investigated and compared using ball-on-disc method at high speed with SiC ball as a counter material. The tests were evaluated by scanning electron microscopy, X-ray diffractometer, energy dispersive X-ray, micro hardness tester and an optical profilometer. The results showed that TiN and TiAlN coatings presented lower friction coefficient and lower wear rate, and that high Al content AlTiN and CrAlN coatings didn't present better anti-wear properties in this test. Oxidation and abrasive wear were the main wear mechanism of TiN coating. In spite of the observation of micro-grooves and partial fractures, TiAlN possessed perfect tribological properties compared with the other coatings. High Al content increased the chemical reactivity and aroused severe adhesive wear of AlTiN coating. CrAlN coating presented better properties of anti-spalling and anti-adhesion, but abundant accumulated debris accelerated wear of the coating under this enclosed wear environment.  相似文献   

20.
CN x /TiN composite coatings were deposited on Si (100) substrates using the pulsed laser deposition (PLD) method. Previous results showed that a seed of titanium nitride (TiN) layer between silicon substrates and a top layer of carbon nitride increased the hardness and modulus values of overall composite coatings (Ref 1). This paper describes the same approach to growing carbon nitride composite coatings with varying thicknesses of different kinds of buffer layers and carbon nitride films on Si (100) substrates at different temperatures and pressures. Preliminary results showed the presence of carbon nitride films by the Fourier transform infrared spectroscopy (FTIR) method. The mechanical properties of the films were characterized using the nanoindentation technique. The crystallographic properties of the films were characterized using the x-ray diffractometer method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号