首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical properties of ceramic materials has become an area of increasing interest in research because these materials possess a great potential for solid-state devices. Conducting polymer composites have attracted considerable interest in recent years because of their numerous applications in a variety of electric and electronic devices. It has been observed that these materials possess a very high relative dielectric constant and high electrical properties at room temperature. Such a high dielectric constant is one of the important parameters in capacitor fabrication and a high electrical conductivity can be used for ionic batteries and electrochemical sensors.  相似文献   

2.
Polymer/ceramic composites are the most promising embedded capacitor material for organic substrates application. Predicting the effective dielectric constant of polymer/ceramic composites is very important for design of composite materials. In this paper, we measured the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films with various BaTiO3 particles loading for 5 different sizes BaTiO3 powders. Experimental data were fitted to several theoretical equations to find the equation useful for the prediction of the effective dielectric constant of polymer/ceramic composites and also to estimate the dielectric constant of BaTiO3 powders. The Lichtenecker equation and the Jayasundere-Smith equation were useful for the prediction of the effective dielectric constant of epoxy/BaTiO3 composites. And calculated dielectric constants of the BaTiO3 powders were in the range of 100 to 600, which were lower than the dielectric constant of BaTiO3 bulk ceramics probably due to the presence of voids or pores.  相似文献   

3.
以15wt%十六烷基三甲基溴化铵改性碳化硅晶须(CTAB-SiCw)和KH550改性纳米BaTiO3(BT)为填料,聚偏氟乙烯(PVDF)为成膜物质,通过溶液流延法制备了BT-SiCw/PVDF三元复合薄膜,利用FTIR、XRD、SEM和LCR介电温谱仪-高温测试系统联用装置对产物进行结构表征和介电性能测试。结果表明:KH550可以成功改性BT粒子且不会改变BT晶体结构,SiCw和BT能够较好地分散在PVDF基体中;随着BT引入量的增加,复合薄膜的介电常数先增加后减小,其中当引入10wt%BT时介电性能最优,即频率f=500 Hz、介电常数εrmax=33、介电损耗tanδmax=0.154。随着温度的升高,该试样的介电常数和介电损耗也逐渐增加,并在120℃达到最大值(f=500 Hz、εrmax=110、tanδmax=1.3)。结果对于研究具有高介电常数的三元复合电介质材料为在埋入式电容器中获得应用提供了一种策略。   相似文献   

4.
新型电容器用高介电常数聚合物研究进展   总被引:1,自引:1,他引:0  
高介电常数聚合物具有优异的介电性和柔韧性,可以制备高容量有机薄膜电容器等无源器件,近年来受到广泛关注.目前理论和实验研究的热点主要集中在聚合物/无机介电陶瓷、聚合物/导电颗粒复合材料和纯有机聚合物材料.综述了这3种聚合物的高介电机理及研究进展.采用物理、化学方法进行表面修饰改性,掺入导电颗粒及设计具有高度芳环结构聚合物等措施,均可有效提高介电常数、减小损耗.  相似文献   

5.
Composites of pyroelectric ceramics and polymers are very important as their unique features and properties can be easily tailored for various specific applications. Lithium tantalatum oxide (LiTaO3, LT), the pyroelectric ceramic powder has been incorporated into a polyvinylidene fluoride–trifluoroethylene [P(VDF–TrFE) 70/30 mol%] copolymer matrix to form 0–3 composites. The composite films were prepared using ‘solvent casting’ (SC) method to disperse the ceramic powder homogeneously in the P(VDF–TrFE) copolymer matrix with various wt% of LT powder. In order to derive high pyroelectric performance, the samples were poled. Electric properties, such as the dielectric constant, dielectric loss, and pyroelectric coefficient, have been measured as a function of temperature and frequency. In addition, material figures-of-merit, very important factors for assessing many sensor applications have also been calculated. The results show that the fabricated lead free lithium tantalite: P(VDF–TrFE) composite materials have a good potential for pyroelectric infrared sensor applications.  相似文献   

6.
PTFE-based ceramic-polymer dielectric composites have been widely researched in the communication field due to their good processing, wide range frequency and temperature stability and being able to provide tunable dielectric constant in a scale. In order to improve the compatibility between the ceramic fillers and polymer matrix without damage of dielectric properties, surface modifiers with less carbon remain are preferred. In this paper, tetraethylorthosilicate (TEOS) is employed as a surface modifier to improve the compatibility between the (Ca, Li, Sm)TiO3 (CLST) ceramic and PTFE, and the dispersion of the ceramic particles in the matrix. FTIR, XPS and TEM results indicate that TEOS is coated on the ceramic particles successfully and forms a silica coating layer. The surface modification improves the dispersion of particles in PTFE and interface contact between the ceramic fillers and PTFE matrix. These improve the thermal stability and reduce the dielectric loss of the dielectric composites. The CLST/PTFE composite modified by TEOS exhibits a dielectric constant of 6.22 with dielectric loss just 0.0012 at microwave frequencies (around 10 GHz).  相似文献   

7.
Abstract

The frequency dependent conductivity and permittivity of a ceramic composite are modelled using electrical networks consisting of randomly positioned resistors and capacitors. The electrical network represents a heterogeneous microstructure that contains both insulating (the capacitor) and conductive regions (the resistor). To validate model results, a model ceramic conductor–insulator composite was designed consisting of a porous lead zirconate titanate impregnated with different concentrations of water. Excellent agreement between experimental and model data was achieved with a strong correlation with many other ceramics, glasses and composites. It is proposed that the 'universal' dielectric response of many materials is a consequence of microstructural heterogeneity. The modelling approach could be used as a simple and effective method for microstructural design of ceramics and other materials with tailored dielectric properties.  相似文献   

8.
Al2O3/6-6-3青铜复合材料的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用粉末冶金法制备出Al2O3/青铜复合材料, 研究了烧结温度、Al2O3颗粒尺寸、含量及表面状态对复合材料性能的影响。结果表明, 采用二次压制与烧结工艺制备的复合材料的组织致密,Al2O3颗粒分布均匀, 综合性能优于6-6-3青铜材料。Al2O3颗粒的化学包覆处理可以使复合材料的性能进一步提高。   相似文献   

9.
The rapid development of modern capacitor devices has raised an urgent need of high performance dielectric materials with superior electrical and mechanical properties with low fabrication costs. By now, individual ceramic or polymer dielectrics cannot meet these criteria. Recently, dielectric nanocomposites have shown very promising dielectric and mechanical properties, which combines both advantages of ceramic and polymers. In this review, the recent progress in dielectric nanocomposites has been systematically addressed. The key parameters which determine the performance of nanocomposites, such as dielectric constants, dielectric loss and breakdown strength have been discussed. The fabrication methods of ceramic nanopowders have been reviewed, including sol–gel, hydrothermal and molten salt method are some common techniques to synthesise nanoparticles. For fabrication of electronic device, printing techniques are utilised. Organic light-emitting diode and sensors from nanocomposite thin film capacitors have also been discussed. The review provides a guideline for designing flexible, printable capacitors from nanocomposites.  相似文献   

10.
We have electrophoretically deposited a variety of coatings for a number of applications. We have also worked extensively with a process for electrophoretically depositing styrene acrylate polymer coatings. These coatings provide useful corrosion protection and dielectric properties for capacitors and electrical insulation. Dielectric breakdown strengths in the order of 1000 V/micrometer have been observed for capacitors with this coating as the dielectric. Various particles have also been dispersed in the electrolyte; these mixtures yield composite coatings of unusual materials such as fissile uranium in a carbon matrix. The process can also be adapted to form very thin, free-standing styrene acrylate films or pellicles. We have also explored the feasibility of depositing a variety of colloidal inorganic particles from liquid suspensions. Our results show that isopropanol works relatively well as a dispersing medium for a large number of powders. Isopropanol slurries can be used to deposit a number of uniform ceramic or glass coatings on metal substrates. Important coating considerations with regard to whether useful coatings can be deposited using this latter type of electrophoretic process include: (1) the average size, size distribution, and shape of the particles, (2) the charge assumed by the powder particles when they are dispersed in a liquid such as isopropanol, and (3) the coefficients of thermal expansion of the substrate and the coating material from the standpoint of the heat treatment or sintering required to obtain sufficient cohesion and adhesion.  相似文献   

11.
《Materials Letters》2007,61(11-12):2478-2481
We have investigated the effect of coupling agents with different organic moiety on the dielectric properties of polyimide/BaTiO3 (70 nm) composite films. INAAT (isopropyl tris(N-amino-ethyl aminoethyl)titanate, KR 44) and APTS (3-amino-propyl-triethoxysilane) were used as coupling agents, respectively, for homogeneous dispersion of BaTiO3 particles into a polyimide matrix. The composite films were prepared by pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA)-based polyimide. Enhanced dispersion of BaTiO3 particles was obtained by the use of INAAT with more organic moiety compared to that afforded by APTS. The polyimide composite with BaTiO3 particles (BaTiO3 content at 50 vol.%) treated by INAAT showed an increased dielectric constant of 19.03 while retaining an appropriate dielectric loss of 0.0109, as compared to the dielectric constant (14.64) of polyimide/APTS-treated BaTiO3 composite. The results of this work demonstrate the potential use of an INAAT coupling agent with more organo functional groups for obtaining enhanced dielectric properties in a polyimide/BaTiO3 composite for application in an embedded capacitor.  相似文献   

12.
In this paper effective medium theory based on Clausius–Mossoti relation was used to predict dielectric properties of multiphase composite system. The composite consisted of E-glass fibers (plain weave S-glass, J.B. Martin) embedded in bisphenol A diglycidylether epoxy matrix (D.E.R. 324, D.O.W. chemicals) with hollow ceramic spherical inclusions (SF 14, P.Q. Corp.) at different volume fractions. In many engineering applications, materials with designed dielectric properties are often sought. An important question in engineering design of a composite material is how the overall properties of the composite depend on those of the individual constituents. Mixing the epoxy resin with hollow ceramic inclusions can effectively reduce dielectric constant of the resin, which is often desirable, rendering composites as good candidates for many applications, especially in telecommunications. Compensation for degradation of mechanical properties of matrix (due to inclusion insertion) is obtained by embedding fibers into the mixture. Measurements of dielectric constant and loss tangent for this multiphase composite system were conducted in the region between 0.1 and 100 kHz range using DEA 290 (T.A. Instruments) dielectric analyzer and experimental results are presented. Good correlation between analytical model and experimental results was observed throughout all frequency range of investigation.  相似文献   

13.
Dielectric properties of Ni-coated BaTiO(3)-PMMA (polymethyl methacrylate) composite were studied from an embedded capacitor application viewpoint. Volume loading of up to 50% was attempted, and the results were compared with uncoated BaTiO(3)-PMMA composite. Ni-coating on BaTiO(3) powder was found to greatly improve the dielectric properties of the composite, especially the dielectric constant value. K values of about 100 with temperature-stable X7E characteristics were realized.  相似文献   

14.
A pressure infiltration apparatus was used to fabricate textile ceramic matrix composites using sol-gel processing with added solid particles. A parabolic rate kinetics model for the infiltration process has been developed and experimentally verified. Darcy's law and a global permeability of the whole material system were adopted in the model. Experiments were conducted using both a 3-d angle interlock and a 2-d woven carbon fibre preform, and a silica sol containing silica particles of submicrometre sizes. The thickness of the particle compaction layer inside the 3-d preform is proportional to the square root of the processing time. The total infiltration time was inversely proportional to the constant processing pressure and increased significantly with reducing the solid particle size by a factor of two. The addition of a non-ionic surfactant reduced the surface energy which resulted in higher composite green density values of up to 90%. Sol-gel processing with added solid particles proved to be a viable method to fabricate textile ceramic matrix composites with a higher density and improved properties.  相似文献   

15.
《Composites Part A》2007,38(1):13-19
Polymer/aluminum nanocomposites have a high dielectric constant and a low dielectric loss because of the combined characteristics of polymer–ceramic (due to the insulating ceramic shell of an aluminum particle) and polymer–metal (due to the metal core of an aluminum particle) systems. In this work, an aluminum particle surface treatment was performed with an epoxide-functionalized silane coupling agent in order to further improve the dielectric properties and processibility of polymer/aluminum composites. Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analyzer (TGA) were used to characterize the aluminum particles before/after coupling agent treatment. It was found that the silane coupling agent was successfully grafted on the aluminum particle surface. Rheology studies of polymer/aluminum composites showed that the coupling agent treatment could significantly reduce the viscosity of the aluminum composites, which indicates coupling agent treatment can improve the processibility of aluminum composites at high filler loading levels. Dielectric properties, including the frequency responses and temperature coefficient of capacitance of the aluminum composites were studied with a dielectric analyzer (DEA). The microstructures of aluminum composites were characterized with a field emission scanning electron microscope (SEM). It was found that a coupling agent treatment can improve the aluminum particle distribution and thereby enhancing the dielectric constant of aluminum composites.  相似文献   

16.
The AC electrical characteristics of polystyrene/Iron composites filled with iron particles of average sizes: 5, 40, 110 and 250 μm, have been investigated. The AC electrical properties were studied in frequency range (50 kHz–1 MHz), and temperature range (30–110 °C) using the impedance method. The AC-conductivity and dielectric constants were determined from the measured impedance data. It was found that the applied frequency, temperature, and iron particles size affect the electrical and dielectric properties of the composites. The AC-electrical conductivity is increasing with temperature. The dielectric constant and the dielectric loss of the composites increase with decreasing the iron particles size. The universal power-law of the electrical conductivity gives exponent with 0 < m < 1 characterizing hopping conduction. The small values of the activation energy indicate that the composite of smallest iron particle size, electrons can tunnel or hop more easily from the valence band to conduction energy band due to the reduction of interparticles separation.  相似文献   

17.
采用硅橡胶(110型)与金属(Ni粉)按质量比1∶2配料,经过特殊的制备工艺,合成金属Ni/硅橡胶高分子复合材料。分别测量样品的压敏效应和介电特性。结果表明:在不同应力作用下,样品的电阻从1 ×1012 Ω降到10Ω, 其变化范围为11个数量级;在恒应力作用下,样品的电阻随时间的增加而减小,表现出“电阻蠕动”现象;室温下,样品的电容和介电损耗都随频率的增加而减小,随应力的增加而增大 , 其原因是在样品中形成了以高分子为绝缘层、金属 Ni粉为导电填料的相互隔离且平行的超电容网络微观结构。在外力作用下,这种微观结构中每一个电容单元的间距逐渐减小而电容逐渐增大,致使样品的电容有大幅度增加;介电损耗是由于样品的电阻率减小,电导增大,使部分电能转化为热能。  相似文献   

18.
The minerals silica, mica, and calcium carbonate (CaCO3) were used as fillers to produce epoxy thin film composites for capacitor application. The effects of filler loading and type on the morphology, tensile, dielectric, and thermal properties of the epoxy thin film composites were determined. Results showed that epoxy thin films with 20 vol% filler loading showed good dielectric properties, thermal conductivity, and thermal stability. However, the tensile properties of the thin films were reduced as the filler loading was increased due to brittleness. Dielectric constant and dielectric loss of epoxy/inorganic composite films generally increased with increasing mineral filler loading. Meanwhile, the presence of mineral filler improved the thermal stability of the thin film composites. The highest dielectric constant of 5.75 with 20 vol% filler loading at a frequency of 1 MHz was exhibited by the epoxy/CaCO3 composite, followed by epoxy/mica and epoxy/silica. Therefore, the epoxy/CaCO3 composite is the most potential candidate for capacitor application. Moreover, precipitated CaCO3 provided better tensile properties and slightly improved the dielectric properties compared with mineral CaCO3.  相似文献   

19.
Low temperature processable materials with high dielectric constants are required for application on flexible organic substrates, for example, in printed electronics. To date, mainly organic polymers with embedded functional particles have been investigated for this purpose. For the first time, we present a printable dielectric composite material composed of ferroelectric high permittivity particles (BaTiO3) bonded by a mainly inorganic sol–gel derived network. The exemplary optimization of the properties by varying the sol–gel precursor illustrates the potential of sol–gel chemistry for printable functional materials. An operational gravure printed capacitor including printed silver electrodes is presented. The measured dielectric constants are among the highest reported in literature for low temperature cured films with moderate dissipation factors. Besides these promising dielectric properties, this composite film shows a ferroelectric response.  相似文献   

20.
ZnO-based varistors containing Ag particles (abbreviated as Z-Ag) were prepared using the conventional solid-state reaction method. The sintering and electrical properties of Z-Ag composites show that the composites can be achieved at a lower sintering temperature (920 °C) relative to that of a commercial ZnO-based varistor. The composites possess non-ohmic behavior analogous to that of the ZnO-based varistor, and the nonlinear voltage can be easily controlled by the content of Ag particles in the ceramic matrix. Meanwhile, the dielectric constant and dissipation factor indicate that the composites have enhanced dielectric properties at room temperature with increasing content of Ag particles, especially at frequencies of 0.5-30 kHz. The mechanisms involved are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号