首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Camelina sativa seed is an underutilized oil source that attracts a growing interest, but it requires more research on its composition and processing. Its high omega‐3 content and growing demand for clean food processing technologies make conventional oil extraction less attractive. In this study, the effect of extraction methods on the bioactive lipid composition of the camelina seed lipid was investigated, and its bioactive lipid composition was modified at the extraction stage using ethanol‐modified supercritical carbon dioxide (SC‐CO2). Ethanol‐modified SC‐CO2 extractions were carried out at varying temperatures (50 and 70 °C), pressures (35 and 45 MPa), and ethanol concentrations (0–10%, w/w), and were compared to SC‐CO2, cold press, and hexane extraction. The highest total lipid yield (37.6%) was at 45 MPa/70 °C/10% (w/w) ethanol. Phospholipids and phenolic content increased significantly with ethanol‐modified SC‐CO2 (p < 0.05). SC‐CO2 with 10% (w/w) ethanol concentration selectively increased phosphatidylcholine (PC) content. Apparent solubility of camelina seed lipids in SC‐CO2, determined using the Chrastil model, ranged from 0.0065 kg oil/kg CO2 (35 MPa/50 °C) to 0.0133 kg oil/kg CO2 (45 MPa/70 °C). Ethanol‐modified SC‐CO2 extraction allowed modification of the lipid composition that was not possible with the conventional extraction methods. This is a promising green method for extraction and fractionation of camelina seed lipids to separate and enrich its bioactives.  相似文献   

2.
The hydrolysis of sunflower and soybean oil, catalyzed by two enzymes, non‐immobilized Candida rugosa and immobilized Candida antarctica lipase, was performed at atmospheric and high‐pressure. The results showed that at atmospheric pressure between 40 °C and 60 °C initial reaction rates were influenced by the temperature variation, as expected. Due to favorable physico‐chemical properties of dense gases as reaction media, hydrolysis of soybean oil was performed in non‐conventional solvents: in supercritical (SC) CO2 and near‐critical propane. In SC CO2 the activity of non‐immobilized Candida rugosa lipase decreased while the reaction rates of hydrolysis catalyzed by immobilized Candida antarctica lipase were 1.5‐fold higher than at atmospheric pressure. However, the reaction rates for the hydrolyses catalyzed by both lipases, were much higher in propane than at atmospheric pressure.  相似文献   

3.
The conventional soybean oil hydrogenation process (metal catalyst on solid support particles slurried in oil, H2 bubbled through the oil) is compared with metal‐decorated integral‐asymmetric polyetherimide (PEI) membranes, as far as changes in temperature and pressure are concerned. Using metal‐decorated polymeric membranes, H2 is supplied to the catalytic sites by permeation from the membrane substructure. As opposed to the slurry process, metal‐decorated membranes show only slightly increased trans fatty acid (TFA) formation when the temperature is raised (50–90°C) to accelerate the process. This is likely due to the efficient and to some extent self‐regulating H2 supply directly to the catalytic sites on the membrane skin. The hydrogenation rate and TFA formation of the metal‐decorated membrane process show a minor dependence on pressure. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

4.
In situ measurements of the ionic conductivity were performed on polyethers, poly(ethylene oxide) (PEO) and poly(oligo oxyethylene methacrylate) (PMEO), with lithium triflate (LiCF3SO3) as crystalline and amorphous electrolytes, and at CO2 pressures up to 20 MPa. Both PEO and PMEO systems in subcritical and supercritical CO2 increased more than five fold in ionic conductivity at 40 °C composed to atmospheric pressure. The pressure dependence of the ionic conductivity for PEO electrolytes was positive under CO2, and increased by two orders of magnitude under pressurization from 0 to 20 MPa, whereas it decreases with increasing pressure of N2. The enhancement is caused by the plasticizing effect of CO2 molecules that penetrate into the electrolytes.  相似文献   

5.
The objective of this study was to investigate the effects of the main process parameters on supercritical fluid extraction of walnut (Juglans regia L.) kernel oil. The recovery of walnut kernel oil was performed in a green and high-tech separation process. CO2 and CO2 + ethanol mixtures were used as the supercritical solvent. The extraction was carried out at operating pressures of 30, 40 and 50 MPa, operating temperatures of 313, 323 and 333 K, mean particle sizes of 1.78×10−4, 3.03×10−4, 4.78×10−4, 7.00×10−4 and 9.00×10−4 m, supercritical CO2 (SC CO2) flow rates of 1.67×10−8, 3.33×10−8, 6.67×10−8 and 13.33×10−8 m3/s and entrainer (ethanol) concentrations of 2, 4, 8 and 12 vol-%. Maximum extraction yield and oil solubility in SC CO2 obtained at 50 MPa, 333 K, 9.00×10−4 m, 3.33×10−4 m3/h were 0.65 kg oil/kg of dry sample and 37.16 g oil/kg CO2, respectively. The results obtained in this study showed that the crossover pressure effect of walnut kernel oil was at 30 MPa. At 30 MPa and 313 K, the obtained extraction yields above 4 vol-% ethanol reached the organic solvent extraction yield of 68.5 kg oil/kg dry sample. Extraction time was decreased significantly because of the higher solubility of walnut kernel oil in SC CO2 + ethanol mixtures.  相似文献   

6.
Hydro‐liquefaction of a woody biomass (birch powder) in sub‐/super‐critical methanol without and with catalysts was investigated with an autoclave reactor at temperatures of 473–673 K and an initial pressure of hydrogen varying from 2.0 to 10.0 MPa. The liquid products were separated into water soluble oil and heavy oil (as bio‐crude) by extraction with water and acetone. Without catalyst, the yields of heavy oil and water soluble oil were in the ranges of 2.4–25.5 wt % and 1.2–17.0 wt %, respectively, depending strongly on reaction temperature, reaction time, and initial pressure of hydrogen. The optimum temperature for the production of heavy oil and water soluble oil was found to be at around 623 K, whereas a longer residence time and a lower initial H2 pressure were found to be favorite conditions for the oil production. Addition of a basic catalyst, such as NaOH, K2CO3, and Rb2CO3, could significantly promote biomass conversion and increase yields of oily products in the treatments at temperatures less than 573 K. The yield of heavy oil attained about 30 wt % for the liquefaction operation in the presence of 5 wt % Rb2CO3 at 573 K and 2 MPa of H2 for 60 min. The obtained heavy oil products consisted of a high concentration of phenol derivatives, esters, and benzene derivatives, and they also contained a higher concentration of carbon, a much lower concentration of oxygen, and a significantly increased heating value (>30 MJ/kg) when compared with the raw woody biomass. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

7.
Supercritical CO2 extraction of soybean oil was investigated. The fatty acid composition was determined using GC. The solubility and kinetic experiments were performed in the pressure range of 100–300 bar and in the temperature range of 313–323 K. The solubility data were correlated using empirical equation proposed by Gordillo et al. Mass transfer model described by Martinez et al. was used to describe the kinetic curves of soybean oil. The main fatty acids of soybean oil were linoleic, oleic, palmitic, stearic and linolenic acid. The improved Gordillo et al. equation was proposed to correct the effect of temperature on the solubility. The new equation was successfully applied for calculating the solubility of fatty acids and soybean oil in supercritical CO2.  相似文献   

8.
Supercritical carbon dioxide (SC‐CO2) has been used to assist the preparation of conductive polypyrrole/cellulose diacetate (PPy/CDa) composites by in situ chemical oxidative polymerization. The morphology and conductivity of resulted composites were investigated with scanning electron microscopy and four‐probe method, respectively. With the assistance of strong swelling effect of SC‐CO2, composite films were obtained with a macroscopically homogeneous structure and conductivity up to 10?1 S cm?1 order of magnitude. Increasing the pressure of SC‐CO2 increased conductivity, while increasing the temperature decreased conductivity. For comparison, PPy/CDa composite was also prepared with conventional oxidative method in aqueous solution. From the viewpoint of conductivity and environmental protection, the SC‐CO2 method showed its superiority over the conventional one. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4575–4580, 2006  相似文献   

9.
The extraction of oil from fixed beds of canola seed (Brassica napus) was studied using carbon dioxide at temperatures and pressures ranging from 25 to 90°C and 10 to 36 MPa, respectively. The oil solubility in CO2 was found to be strongly dependent on CO2 pressure and weakly dependent on the system temperature. The highest observed oil solubility was 11 mg/g CO2 and occurred at 36 MPa and 55°C. The manner in which different methods of seed pretreatment (flaking, cooking, pressure rupturing, chopping and crushing) affected the extraction process also was studied. The total amount of oil recovered from the seeds by CO2 extraction was found to be strongly dependent on the pretreatment. No measurable quantity of oil chould be recovered from whole, intact seeds. The amount of oil extractable from flaked and cooked seeds was comparable to that recoverable by conventional hexane extraction.  相似文献   

10.
The oils from two kinds of pumpkin seeds, black and white ones, were extracted by supercritical CO2 (SC‐CO2). The technological variables for SC‐CO2 extraction were optimized and the resulting oils were analyzed by GC‐MS. As a result, the optimal conditions for SC‐CO2 extraction were as follows: 25~30 MPa, 45 °C, SC‐CO2 flow rate of 30~40 kg/h. The main compounds in the resulting oils were 9,12‐octadecadienoic acid, 9‐octadecenoic acid, stearic acid, palmitic acid for both types of pumpkin seeds, however, the black seed oil contains more unsaturated fatty acids (UFA) than the white seed oil. On the other hand, some compounds including heptadecanoic acid (0.27%), tetracosanic acid (0.1%), 9‐dodecaenoic acid (0.45%) and pentadecenoic acid (0.05%) were found in white seed oil but not in black seed oil; while eicosanic acid (0.05%), 11,14‐eicosadienoic acid (0.2%), 11‐octadecenoic acid (0.06%), 7‐hexadecenoic acid (0.02%) and 1,12‐tridecadiene (0.02%) were only found in black seed oil.  相似文献   

11.
Red pepper oil was extracted using near- and supercritical carbon dioxide. Extraction was carried out at pressures ranging from 10 to 35 MPa and temperatures from 30 to 60 °C, with a CO2 flow rate of 24.01 g/min using a semi-continuous high-pressure extraction apparatus. The duration for extraction was 2 h. The highest oil yield was found at high pressure and temperature. The highest solubility of oil (1.18 mg/g of CO2) was found at 35 MPa and 60 °C. The solubility data of red pepper oil in near- and supercritical CO2 were fitted in Chrastil model. The fatty acid composition of red pepper oil was analyzed by gas chromatography (GC). Linoleic acid was found to be the major fatty acid in the oil. Capsaicin was quantified in different extracts by high performance liquid chromatography (HPLC). The highest capsaicin yield was found at 35 MPa and 60 °C.  相似文献   

12.
Kinetics and selectivity of supercritical carbon dioxide (SC CO2) extraction of Helichrysum italicum flowers were analyzed at pressures in the range of 10-20 MPa and temperatures of 40 °C and 60 °C (density of SC CO2 from 290 to 841 kg/m3) and also at 10 MPa and 40 °C using flowers with different moisture contents (10.5% and 28.4%). Increased moisture content of H. italicum flowers resulted in enchased solubility of solute enabling decrease of SC CO2 consumption necessary for achieving desired extraction yield. The most abundant compounds in the supercritical extracts are sesquiterpenes and waxes while monoterpenes and sesquiterpenes are the main constituents of essential oil obtained by hydrodistillation. The optimal set of working parameters with respect to extraction yield, SC CO2 consumption and chemical composition of extract were defined related to moisture content of raw material and SC CO2 density.  相似文献   

13.
Carbonated soybean oil (CSO) containing five‐membered cyclic carbonate groups has been obtained in the reaction of epoxidized soybean oil with carbon dioxide in the presence of KI activated by 18‐crown‐6 under 6 MPa CO2 pressure at 130°C. The CSO was used for modification of bisphenol‐A based epoxy resin. The composition epoxide‐cyclic carbonate was cured using polyamine hardeners by one‐step and two‐step procedures. All cured compositions were characterized for their thermal and mechanical properties and compared with the parent epoxy network. The optimal properties were obtained for compositions containing CSO and cured by one‐step method when phase separation takes place. The mechanical properties were discussed in terms of morphology observed by SEM. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2904‐2914, 2006  相似文献   

14.
Electrochemical hydrogenation is a novel, alternative process for selective hydrogenation of vegetable oils, because of its high extent of hydrogenation and low trans-isomer formation. Electrochemical hydrogenation of soybean oil in a diaphragm reactor with a formate ion concentration of 0.4 mol/l at pH 5.0 under moderate temperature conditions using a current density of 10 mA/cm2 was investigated to identify the critical conditions affecting the selective hydrogenation reaction and the resulting fatty acid profile. The optimum composition was an oil-to-formate solution ratio of 0.3 (w/w), 2?C3 g EDDAB in 100 g soybean oil, and 0.8% Pd?CC catalyst loading. The electrochemical hydrogenation reaction of soybean oil was described by first-order kinetics, and the kinetic rate constants and reaction selectivity were determined accordingly. Re-use of the Pd?CC catalyst up to five times was found to be acceptable. A comprehensive evaluation revealed that the most significant conditions affecting the extent of hydrogenation and the trans fatty acids content of final products were operating temperature, pH of the formate solution, and catalyst loading.  相似文献   

15.
The three-phase catalytic hydrogenation (TPCH) of α-methylstyrene using supercritical carbon dioxide (scCO2) in a slurry reactor is reported. Kinetic data are presented for the reaction at 323 K over the range of pressure from 7.0 to 13.0 MPa using a carbon-supported palladium catalyst. The experimental data are fitted to a first-order power-law model. A detailed explanation of the methodology used to isolate the effect of CO2 on the rate of reaction is presented. Particular attention is given to the phase behaviour of the reaction system and the volumetric expansion of the liquid phase with CO2. It is shown that scCO2 significantly enhances the rate of reaction. This effect is attributed to the enhancement of the solubility of hydrogen in the liquid phase.  相似文献   

16.
A supercritical antisolvent (SAS) process is employed for production of solid nanoparticles from atomized droplets of dilute solution in a flowing supercritical carbon dioxide (SC CO2) stream by attaining extremely high, very rapid, and uniform supersaturation. This is facilitated by a two‐way mass transfer of CO2 and solvent, to and from the droplet respectively, rendering rapid reduction in equilibrium solubility of the solid solute in the ternary solution. The present work analyses the degree of supersaturation and nucleation kinetics in a single droplet of cholesterol solution in acetone during its flight in a flowing SC CO2 stream. Both temperature and composition are assumed to be uniform within the droplet, and their variations with time are calculated by balancing the heat and mass transfer fluxes to and from the droplet. The equilibrium solubility of cholesterol with CO2 dissolution has been predicted as being directly proportional to the Partial Molar Volume Fraction (PMVF) of acetone in the binary (CO2–acetone) system. The degree of supersaturation has been simulated up to the time required to attain almost zero cholesterol solubility in the droplet for evaluating the rate of nucleation and the size of the stable critical nuclei formed. The effects of process parameters have been analysed in the pressure range of 7.1–35.0 MPa, temperature range of 313–333 K, SC CO2 flow rate of 0.1136–1.136 mol s?1, the ratio of the volumetric flow rates of CO2‐to‐solution in the range of 100–1000, and the initial mole fraction of cholesterol in acetone solution in the range of 0.0025–0.010. The results confirm an extremely high and rapid increase in degree of supersaturation, very high nucleation rates and stable critical nucleus diameter of the order of a nanometre. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide   总被引:4,自引:0,他引:4  
The effect of pressure, temperature, and CO2 flow rale on the extent of conversion and the product composition in the enzyme-catalyzed hydrolysis of canola oil in supercritical carbon dioxide (SCCO2) was investigated using lipase from Mucor miehei immobilized on macroporous anionic resin (Lipozyme IM). Reactions were carried out in a continuous flow reactor at 10, 24, and 38 MPa and 35 and 55°C. Supercritical fluid chromatography was used to analyze the reaction products. A conversion of 63–67% (triglyceride disappearance) was obtained at 24–38 MPa. Mono-and diglyceride production was minimum at 10 MPa and 35°C. Monoglyceride production was favored at 24 MPa. The amount of product obtained was higher at 24–38 MPa due to enhanced solubility in SCCO2. Complete hydrolysis of oil should be possible by increasing the enzyme load and/or decreasing the quantity of the oil substrate. There was a drop in triglyceride conversion over a 24-h reaction time at 38 MPa and 55°C, which may be an indication of loss of enzyme activity. Pressure, temperature, and CO2 flow rate are important parameters to be optimized in the enzyme-catalyzed hydrolysis of canola oil in SCCO2 to maximize its conversion to high-value products.  相似文献   

18.
A new diaphragm electrochemical system was devised and tested for hydrogenation of soybean oil under moderate processing temperature and atmospheric pressure. With proper loading of the catalyst Pd-C, the reactor was operated successfully for 6 h and yielded hydrogenated soybean oil containing 8.62% TFAs with an IV of 88.86 g I2/100 g oil and an AV of 0.7 mg KOH/g oil. The low AV (acid value) of the hydrogenated oil, indicative of the oxidization tendency of the oil, is highly desirable from the industrial application standpoint. The low specific isomerization index was reached with 0.4 mol/L of formate ions at pH 5.0 under 60 °C using a constant applied current density (10 mA/cm2). The extent of hydrogenation was found to increase with increasing current density, formate ion concentration, reaction temperature, catalyst loading, and speed of agitation. It was characterized that the extent of hydrogenation under low pH (2.0–5.0) was controlled by the regeneration of formate ion, whereas under high pH (6.0–10.0) the hydrogenation was influenced strongly by the formate ion stability.  相似文献   

19.
Solubility data of organophosphorous metal extractants in supercritical fluids (SCF) are crucial for designing metal extraction processes. We have developed a new equation of state (EOS) based on virial equation including an untypical parameter as BP/RT, reduced temperature and pressure for prediction of solute solubility in supercritical carbon dioxide (SC CO2). Solubility experimental data (solubility of tributylphosphate in SC CO2) were correlated with the two cubic equations of state (EOS) models, namely the Peng–Robinson EOS (PR‐EOS) and the Soave–Redlich–Kwong EOS (SRK‐EOS), together with two adjustable parameter van der Waals mixing and combining rules and our proposed EOS. The AARD of our EOS is significantly lower than that obtained from the other EOS models. The proposed EOS presented more accurate correlation for solubility data in SC CO2. It can be employed to speed up the process of SCF applications in industry.  相似文献   

20.
During enzymatic reactions carried out in supercritical CO2 (SCCO2) media, CO2 can expand the liquid reactant mixture, especially lipid-type substances, due to pressure increase and dissolution of CO2, causing viscosity reduction, and improvement of the diffusion of reactants and products. For better understanding of the transesterification reaction of canola oil and canola stearin in SCCO2 media, the viscosity of canola oil at 40, 50, 65, and 75 °C and its blend with canola stearin (30 wt%) at 65 °C in equilibrium with high pressure CO2 was measured up to 12.4 MPa using a rotational rheometer equipped with a high pressure cell. The solubility of CO2 in canola oil at 40 and 65 °C and its blend with canola stearin at 65 °C was also determined at pressures of up to 20 MPa using a high pressure view cell. The viscosity of canola oil at 40, 50, 65, and 75 °C and its blend with canola stearin at 65 °C decreased exponentially to 87.2, 84.7, 74.8, 66.2, and 74.2% of its value at atmospheric pressure, respectively, with pressure increase up to 12.4 MPa. The viscosity of the samples decreased with an increase in temperature, but the effect of temperature diminished above 10 MPa. The viscosities of CO2-expanded canola oil and its blend with canola stearin at 65 °C were similar up to 12.4 MPa. The samples exhibited shear-thickening behavior as the flow behavior index reached almost 1.2 at elevated pressures. The mass fraction of CO2 in canola oil at 40 and 65 °C and its blend with canola stearin at 65 °C reached 24 and 21% at 20 MPa, respectively. The Grunberg and Nissan model was used to correlate the viscosity of CO2-expanded lipid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号